1
|
Goettig P, Chen X, Harris JM. Correlation of Experimental and Calculated Inhibition Constants of Protease Inhibitor Complexes. Int J Mol Sci 2024; 25:2429. [PMID: 38397107 PMCID: PMC10889394 DOI: 10.3390/ijms25042429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Predicting the potency of inhibitors is key to in silico screening of promising synthetic or natural compounds. Here we describe a predictive workflow that provides calculated inhibitory values, which concord well with empirical data. Calculations of the free interaction energy ΔG with the YASARA plugin FoldX were used to derive inhibition constants Ki from PDB coordinates of protease-inhibitor complexes. At the same time, corresponding KD values were obtained from the PRODIGY server. These results correlated well with the experimental values, particularly for serine proteases. In addition, analyses were performed for inhibitory complexes of cysteine and aspartic proteases, as well as of metalloproteases, whereby the PRODIGY data appeared to be more consistent. Based on our analyses, we calculated theoretical Ki values for trypsin with sunflower trypsin inhibitor (SFTI-1) variants, which yielded the more rigid Pro14 variant, with probably higher potency than the wild-type inhibitor. Moreover, a hirudin variant with an Arg1 and Trp3 is a promising basis for novel thrombin inhibitors with high potency. Further examples from antibody interaction and a cancer-related effector-receptor system demonstrate that our approach is applicable to protein interaction studies beyond the protease field.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia or (X.C.); (J.M.H.)
| | - Xingchen Chen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia or (X.C.); (J.M.H.)
| | - Jonathan M. Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia or (X.C.); (J.M.H.)
| |
Collapse
|
2
|
Dubey S, Verma DK, Kumar M. Severe acute respiratory syndrome Coronavirus-2 GenoAnalyzer and mutagenic anomaly detector using FCMFI and NSCE. Int J Biol Macromol 2024; 258:129051. [PMID: 38159703 DOI: 10.1016/j.ijbiomac.2023.129051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/08/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
In order to deepen our understanding of the virus and help guide the creation of efficient therapies, this study uses artificial intelligence tools to thoroughly explore the genetic sequences of the SARS-CoV-2 virus. The process starts by using the Fuzzy Closure Miner for Frequent Itemsets (FCMFI) on a large corpus of SARS-CoV-2 genomic sequences to reveal hidden patterns, including nucleotides base sequences, repeating motifs, and corresponding interchanges. Then, using the Nucleotide Sequence Comprehension Engine (NSCE) technique, we were able to precisely define the genomic areas for mutation analysis. Structured and unstructured proteins are both strongly impacted by virus mutations, with spike proteins that are linked to the severity of COVID-19 pneumonia being particularly affected. Notably, the Mutagenic Anomaly Detector shows a 65 % efficiency boost in computing genome mutation rates compared to conventional point mutation analysis, while GenoAnalyzer offers a remarkable 93.33 % improvement over existing approaches in recognizing common genomic sequence patterns. These results highlight the potential of FCMFI to reveal complex genomic patterns and significant insights in COVID-19 genetic sequences when combined with mutation analysis. The Mutagenic Anomaly Detector and GenoAnalyzer show promise for revealing hidden genomic patterns and precisely estimating the SARS-CoV-2 mutation rate.
Collapse
Affiliation(s)
- Shivendra Dubey
- Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna, Madhya Pradesh Pin-473226, India.
| | - Dinesh Kumar Verma
- Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna, Madhya Pradesh Pin-473226, India.
| | - Mahesh Kumar
- Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna, Madhya Pradesh Pin-473226, India.
| |
Collapse
|
3
|
Mohanty SS, Sahoo CR, Paidesetty SK, Padhy RN. Role of phytocompounds as the potential anti-viral agent: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2311-2329. [PMID: 37160482 PMCID: PMC10169142 DOI: 10.1007/s00210-023-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Viral diseases are the most notorious infective agent(s) causing morbidity and mortality in every nook and corner for ages; viruses are active in host cells, and specific anti-virus medicines' developments remain uncanny. In this century of the biological era, human viruses act predominantly as versatile spreaders. The infection of the present COVID-19 virus is up in the air; blithely, the integument of medicinal chemistry approaches, particularly bioactive derived phytocompounds could be helpful to control those human viruses, recognized in the last 100 years. Indeed, natural products are being used for various therapeutic purposes. The major bioactive phytocompounds are chemically containing coumarin, thiosulfonate, steroid, polysaccharide, tannin, lignin, proanthocyanidin, terpene, quinone, saponin, flavonoid, alkaloid, and polyphenol, that are documented for inhibitory action against several viral infections. Mostly, about 20-30% of plants from tropical or temperate regions are known to have some antiviral activity. This comprehensive analysis of bioactive-derived phytocompounds would represent a significant impact and might be helpful for antiviral research and the current state of viral treatments.
Collapse
Affiliation(s)
- Swati Sucharita Mohanty
- Department of Medical Oncology, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
- Present Address: Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, ICMR-Regional Medical Research Centre, 751023 Bhubaneswar, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Rabindra Nath Padhy
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| |
Collapse
|
4
|
Liu N, Yang Z, Liu Y, Dang X, Zhang Q, Wang J, Liu X, Zhang J, Pan X. Identification of a Putative SARS-CoV-2 Main Protease Inhibitor through In Silico Screening of Self-Designed Molecular Library. Int J Mol Sci 2023; 24:11390. [PMID: 37511149 PMCID: PMC10379331 DOI: 10.3390/ijms241411390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
There have been outbreaks of SARS-CoV-2 around the world for over three years, and its variants continue to evolve. This has become a major global health threat. The main protease (Mpro, also called 3CLpro) plays a key role in viral replication and proliferation, making it an attractive drug target. Here, we have identified a novel potential inhibitor of Mpro, by applying the virtual screening of hundreds of nilotinib-structure-like compounds that we designed and synthesized. The screened compounds were assessed using SP docking, XP docking, MM-GBSA analysis, IFD docking, MD simulation, ADME/T prediction, and then an enzymatic assay in vitro. We finally identified the compound V291 as a potential SARS-CoV-2 Mpro inhibitor, with a high docking affinity and enzyme inhibitory activity. Moreover, the docking results indicate that His41 is a favorable amino acid for pi-pi interactions, while Glu166 can participate in salt-bridge formation with the protonated primary or secondary amines in the screened molecules. Thus, the compounds reported here are capable of engaging the key amino acids His41 and Glu166 in ligand-receptor interactions. A pharmacophore analysis further validates this assertion.
Collapse
Affiliation(s)
- Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zeyu Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xintao Dang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueying Liu
- School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
5
|
Lin CM, Chen HH, Lung CW, Chen HJ. Antiviral and Immunomodulatory Activities of Clinacanthus nutans (Burm. f.) Lindau. Int J Mol Sci 2023; 24:10789. [PMID: 37445964 PMCID: PMC10342181 DOI: 10.3390/ijms241310789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Clinacanthus nutans (Burm. f.) Lindau has been used as a traditional herbal medicine for treating snake bites, scalds, burns, and viral and bacterial infections. It has been attracting an increasing amount of attention because of its biological activities, including its antidiabetic, antioxidant, antibacterial, anticancer, anti-inflammatory, antiviral, and immunoregulatory activities. Here, we conducted a panoramic survey of the literature regarding the immunoregulatory, anti-inflammatory, and antiviral activities of C. nutans. We discovered that C. nutans extracts have virucidal activities against herpes simplex virus types 1 and 2, varicella-zoster virus, cyprinid herpesvirus 3, porcine reproductive and respiratory syndrome virus, mosquito-borne chikungunya virus, and potentially SARS-CoV-2; such activities likely result from C. nutans interfering with the entry, penetration, infection, and replication of viruses. We also reviewed the phytochemicals in C. nutans extracts that exhibit anti-inflammatory and immunoregulatory activities. This updated review of the antiviral, anti-inflammatory, and immunoregulatory activities of C. nutans may guide future agricultural practices and reveal clinical applications of C. nutans.
Collapse
Affiliation(s)
- Chung-Ming Lin
- Department of Biotechnology, School of Health Technology, Ming Chuan University, Taoyuan 33348, Taiwan;
| | - Hsin-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Chi-Wen Lung
- Department of Creative Product Design, Asia University, Taichung 413305, Taiwan;
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
6
|
Zulkifli ND, Zulkifle N. Insight from sirtuins interactome: topological prominence and multifaceted roles of SIRT1 in modulating immunity, aging and cancer. Genomics Inform 2023; 21:e23. [PMID: 37557919 PMCID: PMC10326532 DOI: 10.5808/gi.23003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 07/08/2023] Open
Abstract
The mammalian sirtuin family, consisting of SIRT1-SIRT7, plays a vital role in various biological processes, including cancer, diabetes, neurodegeneration, cardiovascular disease, cellular metabolism, and cellular homeostasis maintenance. Due to their involvement in these biological processes, modulating sirtuin activity seems promising to impact immune- and aging-related diseases, as well as cancer pathways. However, more understanding is required regarding the safety and efficacy of sirtuin-targeted therapies due to the complex regulatory mechanisms that govern their activity, particularly in the context of multiple targets. In this study, the interaction landscape of the sirtuin family was analyzed using a systems biology approach. A sirtuin protein-protein interaction network was built using the Cytoscape platform and analyzed using the NetworkAnalyzer and stringApp plugins. The result revealed the sirtuin family's association with numerous proteins that play diverse roles, suggesting a complex interplay between sirtuins and other proteins. Based on network topological and functional analysis, SIRT1 was identified as the most prominent among sirtuin family members, demonstrating that 25 of its protein partners are involved in cancer, 22 in innate immune response, and 29 in aging, with some being linked to a combination of two or more pathways. This study lays the foundation for the development of novel therapies that can target sirtuins with precision and efficacy. By illustrating the various interactions among the proteins in the sirtuin family, we have revealed the multifaceted roles of SIRT1 and provided a framework for their possible roles to be precisely understood, manipulated, and translated into therapeutics in the future.
Collapse
Affiliation(s)
- Nur Diyana Zulkifli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Nurulisa Zulkifle
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| |
Collapse
|
7
|
Sawang N, Phongphanphanee S, Wong-ekkabut J, Sutthibutpong T. Biophysical Interpretation of Evolutionary Consequences on the SARS-CoV2 Main Protease through Molecular Dynamics Simulations and Network Topology Analysis. J Phys Chem B 2023; 127:2331-2343. [PMID: 36913683 PMCID: PMC10022058 DOI: 10.1021/acs.jpcb.2c08312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/25/2023] [Indexed: 03/14/2023]
Abstract
In this study, we present a combined analysis procedure between atomistic molecular dynamics (MD) simulations and network topology to obtain more understanding on the evolutionary consequences on protein stability and substrate binding of the main protease enzyme of SARS-CoV2. Communicability matrices of the protein residue networks (PRNs) were extracted from MD trajectories of both Mpro enzymes in complex with the nsp8/9 peptide substrate to compare the local communicability within both proteases that would affect the enzyme function, along with biophysical details on global protein conformation, flexibility, and contribution of amino acid side chains to both intramolecular and intermolecular interactions. The analysis displayed the significance of the mutated residue 46 with the highest communicability gain to the binding pocket closure. Interestingly, the mutated residue 134 with the highest communicability loss corresponded to a local structural disruption of the adjacent peptide loop. The enhanced flexibility of the disrupted loop connecting to the catalytic residue Cys145 introduced an extra binding mode that brought the substrate in proximity and could facilitate the reaction. This understanding might provide further help in the drug development strategy against SARS-CoV2 and prove the capability of the combined techniques of MD simulations and network topology analysis as a "reverse" protein engineering tool.
Collapse
Affiliation(s)
- Nuttawat Sawang
- Theoretical
and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi
(KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
- Center
of Excellence in Theoretical and Computational Science (TaCS-CoE),
Faculty of Science, King Mongkut’s
University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Saree Phongphanphanee
- Computational
Biomodelling Laboratory for Agricultural Science and Technology (CBLAST),
Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Thailand
Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Department
of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jirasak Wong-ekkabut
- Computational
Biomodelling Laboratory for Agricultural Science and Technology (CBLAST),
Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Thailand
Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Thana Sutthibutpong
- Theoretical
and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi
(KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
- Center
of Excellence in Theoretical and Computational Science (TaCS-CoE),
Faculty of Science, King Mongkut’s
University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
- Computational
Biomodelling Laboratory for Agricultural Science and Technology (CBLAST),
Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Rivera RG, Regidor PJS, Ruamero Jr EC, Allanigue EJV, Salinas MV. A network pharmacology and molecular docking approach in the exploratory investigation of the biological mechanisms of lagundi (Vitex negundo L.) compounds against COVID-19. Genomics Inform 2023; 21:e4. [PMID: 37037462 PMCID: PMC10085743 DOI: 10.5808/gi.22060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/27/2022] [Accepted: 02/08/2023] [Indexed: 04/03/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.
Collapse
Affiliation(s)
- Robertson G. Rivera
- Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila, Manila, Philippines
| | - Patrick Junard S. Regidor
- Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila, Manila, Philippines
| | - Edwin C. Ruamero Jr
- Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila, Manila, Philippines
| | - Eric John V. Allanigue
- Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Melanie V. Salinas
- Safety and Medical Affairs Department, Clinchoice Inc., Fort Washington, PA 19034, USA
| |
Collapse
|
9
|
Solo P, Arockia doss M. Imidazole-Based Alkaloids from Marine Sponges ( Leucetta and Clathrina) as Potential Inhibitors Targeting SARS-CoV-2 Main Protease: An In Silico Approach. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2182796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Peter Solo
- Department of Chemistry, St. Joseph University, Dimapur, India
- Department of Chemistry, St. Joseph’s College (Autonomous), Jakhama, India
| | - M. Arockia doss
- Department of Chemistry, St. Joseph University, Dimapur, India
| |
Collapse
|
10
|
Tsuji K, Kobayakawa T, Ishii T, Higashi-Kuwata N, Azuma C, Shinohara K, Miura Y, Yamamoto K, Nishimura S, Hattori SI, Bulut H, Mitsuya H, Tamamura H. Exploratory Studies of Effective Inhibitors against the SARS-CoV-2 Main Protease by Halogen Incorporation and Amide Bond Replacement. Chem Pharm Bull (Tokyo) 2023; 71:879-886. [PMID: 38044140 DOI: 10.1248/cpb.c23-00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In the development of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs, its main protease (Mpro), which is an essential enzyme for viral replication, is a promising target. To date, the Mpro inhibitors, nirmatrelvir and ensitrelvir, have been clinically developed by Pfizer Inc. and Shionogi & Co., Ltd., respectively, as orally administrable drugs to treat coronavirus disease of 2019 (COVID-19). We have also developed several potent inhibitors of SARS-CoV-2 Mpro that include compounds 4, 5, TKB245 (6), and TKB248 (7), which possesses a 4-fluorobenzothiazole ketone moiety as a reactive warhead. In compounds 5 and TKB248 (7) we have also found that replacement of the P1-P2 amide of compounds 4 and TKB245 (6) with the corresponding thioamide improved their pharmacokinetics (PK) profile in mice. Here, we report the design, synthesis and evaluation of SARS-CoV-2 Mpro inhibitors with replacement of a digestible amide bond by surrogates (9-11, 33, and 34) and introduction of fluorine atoms in a metabolically reactive methyl group on the indole moiety (8). As the results, these compounds showed comparable or less potency compared to the corresponding parent compounds, YH-53/5h (2) and 4. These results should provide useful information for further development of Mpro inhibitors.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
| | - Chika Azuma
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Kenichi Yamamoto
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Soshi Nishimura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health
- Department of Clinical Sciences, Kumamoto University Hospital
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
11
|
Kurnia D, Putri SA, Tumilaar SG, Zainuddin A, Dharsono HDA, Amin MF. In silico Study of Antiviral Activity of Polyphenol Compounds from Ocimum basilicum by Molecular Docking, ADMET, and Drug-Likeness Analysis. Adv Appl Bioinform Chem 2023; 16:37-47. [PMID: 37131997 PMCID: PMC10149097 DOI: 10.2147/aabc.s403175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
Aim The SARS-CoV-2 virus is a disease that has mild to severe effects on patients, which can even lead to death. One of the enzymes that act as DNA replication is the main protease, which becomes the main target in the inhibition of the SARS-CoV-2 virus. In finding effective drugs against this virus, Ocimum basilicum is a potential herbal plant because it has been tested to have high phytochemical content and bioactivity. Apigenin-7-glucuronide, dihydrokaempferol-3-glucoside, and aesculetin are polyphenolic compounds found in Ocimum basilicum. Purpose The purpose of this study was to analyze the mechanism of inhibition of the three polyphenolic compounds in Ocimum basilicum against the main protease and to predict pharmacokinetic activity and the drug-likeness of a compound using the Lipinski Rule of Five. Patients and Methods The method used is to predict the molecular docking inhibition mechanism using Autodock 4.0 tools and use pkcsm and protox online web server to analyze ADMET and Drug-likeness. Results The binding affinity for apigenin-7-glucuronide was -8.77 Kcal/mol, dihydrokaempferol-3-glucoside was -8.96 Kcal/mol, and aesculetin was -5.79 Kcal/mol. Then, the inhibition constant values were 375.81 nM, 270.09 nM, and 57.11 µM, respectively. Apigenin-7-glucuronide and dihydrokaempferol-3-glucoside bind to the main protease enzymes on the active sites of CYS145 and HIS41, while aesculetin only binds to the active sites of CYS145. On ADMET analysis, these three compounds met the predicted pharmacokinetic parameters, although there are some specific parameters that must be considered especially for aesculetin compounds. Meanwhile, on drug-likeness analysis, apigenin-7-glucuronide and dihydrokaempferol-3-glucoside compounds have one violation and aesculetin have no violation. Conclusion Based on the data obtained, Apigenin-7-glucuronide and dihydrokaempferol-3-glucoside are compounds that have more potential to have an antiviral effect on the main protease enzyme than aesculetin. Based on pharmacokinetic parameters and drug-likeness, three compounds can be used as lead compounds for further research.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Correspondence: Dikdik Kurnia, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia, Tel/Fax +62-22-7794391, Email
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Sefren Geiner Tumilaar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Hendra Dian Adhita Dharsono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Meiny Faudah Amin
- Dental Conservation, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| |
Collapse
|