1
|
Kumar H, Dhanjal DS, Guleria S, Nepovimova E, Sethi N, Dhalaria R, Kuca K. Hepatoprotective effects of fruits pulp, seed, and peel against chemical-induced toxicity: Insights from in vivo studies. Food Chem Toxicol 2024; 189:114742. [PMID: 38754807 DOI: 10.1016/j.fct.2024.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The liver is a vital organ in human physiology positioned in the upper right quadrant of the peritoneal cavity, which plats a critical role in metabolic processes, detoxification of various substances and overall homeostasis. Along with these critical functions, hepatic diseases impose as significant global health threat. Liver illness is the cause of two million fatalities every year, or 4% of all deaths. Traditionally, healthcare providers have prescribed antibacterial and antiviral medications to address liver illness. Nephrotoxicity is a frequently observed negative reaction to drugs, with the majority of such events happening in individuals who have advanced cirrhosis. Thus, recognizing this gap, there is a dire need of exploration of pharmaceutical alterative for hepatic diseases, with special focus on their efficacy and reduced toxicity. Fruits have long been known to therapeutic impact on human health, thus exploration of fruits components namely pulp, seeds and peels containing phytochemicals have emerged as a promising avenue for hepatoprotective interventions. Thus, review comprehends the information about worldwide burden of chemical induced toxicity and injuries as well as highlight the on-going challenges in hepatic disease management. It also shed light on the valuable contributions fruit parts and their phytocompounds obtained from different components of fruits. Fruit pulp, especially when rich in flavonoids, has demonstrated significant potential in animal model studies. It has been observed to enhance the activity of antioxidant enzymes and reduce the expression of pro-inflammatory markers. The methanolic and ethanolic extracts have demonstrated the most favorable outcomes. Further, this review also discusses about the safety assessments of fruits extracts for their utilization as hepatoprotective agents.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
El-Demerdash FM, Al Mhanna AB, El-Sayed RA, Mohamed TM, Salem MM. Hepatoprotective impact of Nigella sativa silver nanocomposite against genotoxicity, oxidative stress, and inflammation induced by thioacetamide. Tissue Cell 2024; 87:102332. [PMID: 38367325 DOI: 10.1016/j.tice.2024.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Protection from liver damage and the repercussion of that harm is thought to be crucial for reducing the number of deaths each year. This work was developed to evaluate the possible role of silver nanocomposite prepared using Nigella sativa (N. sativa) aqueous extract against the hepatic damage brought on by thioacetamide (TAA), with particular attention to how they affect the NF-κβ, TNF-α, IL-1β, and COX-2 signaling pathways. There were seven groups of male Wistar rats used as follows: control, saline, N. sativa aqueous extract (NSAE; 200 mg/kg/d), N. sativa silver nanocomposite (NS-AgNC; 0.25 mg/kg/d), TAA (100 mg/kg; thrice weekly), NSAE + TTA, and NS-AgNC + TAA, respectively. The experiment continued for six weeks. The results showed that NS-AgNPs significantly enhanced liver functions (p<0.05) (albumin, ALP, LDH, AST, total protein, ALT, and globulin) and oxidant/antioxidant biomarkers (p<0.05) (H2O2, MDA, PCC, NO, SOD, CAT, GPx, GR, GST and, GSH), contrasted with TAA group. Moreover, a significant (p<0.05) downregulation of the gene expressions (COX-2, TNF-α, IL-1β, and NF-κβ) was also achieved by using silver nanocomposite therapy. These findings have been supported by histological analysis. Collectively, NS-AgNC exhibits more prominent and well-recognized protective impacts than NSAE in modulating the anti-inflammatory, genotoxicity and oxidative stress effects against TAA-induced liver injuries.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Ansam B Al Mhanna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, 31257, Tanta, Egypt.
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, 31257, Tanta, Egypt.
| |
Collapse
|
3
|
Besné-Eseverri I, Trepiana J, Gómez-Zorita S, Antunes-Ricardo M, Cano MP, Portillo MP. Beneficial Effects of Opuntia spp. on Liver Health. Antioxidants (Basel) 2023; 12:1174. [PMID: 37371904 DOI: 10.3390/antiox12061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The genus Opuntia spp. includes plants capable of growing in arid, temperate and tropical climates. The vast majority of wild species grow in Mexico, but O. ficus-indica (prickly pear or nopal) is cultivated around the world and it is one of the most studied. This review shows the currently available knowledge concerning the action of O. ficus-indica and other Opuntia species (Opuntia vulgaris, Opuntia robusta, Opuntia streptacantha, Opuntia microdasys, Opuntia dillenii and Opuntia dejecta) on liver health. The available data demonstrate the positive effects of extracts, vinegar, juices or seed oil of the Opuntia genus on the alterations induced in the liver by inadequate feeding patterns or the administration of chemicals. In this regard, the potential beneficial effects of nopal are related to the attenuation of triglyceride accumulation, oxidative stress and/or inflammation. Nevertheless, there is no information concerning the bioactive compound's characterisation in most of these studies; consequently, it is not possible to link the therapeutic effects of these plants to the presence of specific compounds in the nopal extracts. Therefore, further research is needed to confirm if the positive effects observed in animal models are also found in humans, in order to determine whether Opuntia can represent an effective tool to prevent and/or manage hepatic alterations.
Collapse
Affiliation(s)
- Irene Besné-Eseverri
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria, Spain
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - M Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
4
|
Villa-Jaimes GS, Moshage H, Avelar-González FJ, González-Ponce HA, Buist-Homan M, Guevara-Lara F, Sánchez-Alemán E, Martínez-Hernández SL, Ventura-Juárez J, Muñoz-Ortega MH, Martínez-Saldaña MC. Molecular and Antioxidant Characterization of Opuntia robusta Fruit Extract and Its Protective Effect against Diclofenac-Induced Acute Liver Injury in an In Vivo Rat Model. Antioxidants (Basel) 2023; 12:antiox12010113. [PMID: 36670975 PMCID: PMC9855095 DOI: 10.3390/antiox12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
A molecular characterization of the main phytochemicals and antioxidant activity of Opuntia robusta (OR) fruit extract was carried out, as well as an evaluation of its hepatoprotective effect against diclofenac (DF)-induced acute liver injury was evaluated. Phenols, flavonoids and betalains were quantified, and antioxidant characterization was performed by means of the ABTS•+, DPPH and FRAP assays. UPLC-QTOF-MS/MS was used to identify the main biocompounds present in OR fruit extract was carried out via. In the in vivo model, groups of rats were treated prophylactically with the OR fruit extract, betanin and N-acteylcysteine followed by a single dose of DF. Biochemical markers of oxidative stress (MDA and GSH) and relative gene expression of the inducible antioxidant response (Nrf2, Sod2, Hmox1, Nqo1 and Gclc), cell death (Casp3) and DNA repair (Gadd45a) were analyzed. Western blot analysis was performed to measure protein levels of Nrf2 and immunohistochemical analysis was used to assess caspase-3 activity in the experimental groups. In our study, the OR fruit extract showed strong antioxidant and cytoprotective capacity due to the presence of bioactive compounds, such as betalain and phenols. We conclude that OR fruit extract or selected components can be used clinically to support patients with acute liver injury.
Collapse
Affiliation(s)
- Gloria Stephanie Villa-Jaimes
- Department de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center of Groningen, University of Groningen, 9713 ZP Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 ZP Groningen, The Netherlands
| | | | | | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center of Groningen, University of Groningen, 9713 ZP Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 ZP Groningen, The Netherlands
| | - Fidel Guevara-Lara
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | - Esperanza Sánchez-Alemán
- Department de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
- Unidad de Medicina Familiar 8, Instituto Mexicano del Seguro Social (IMSS), Aguascalientes 20180, Mexico
| | - Sandra Luz Martínez-Hernández
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | - Javier Ventura-Juárez
- Department de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | - Ma. Consolación Martínez-Saldaña
- Department de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
- Correspondence:
| |
Collapse
|