1
|
Hajaji AN, Heikal YM, Hamouda RAEF, Abassi M, Ammari Y. Multivariate investigation of Moringa oleifera morpho-physiological and biochemical traits under various water regimes. BMC PLANT BIOLOGY 2024; 24:505. [PMID: 38840043 PMCID: PMC11155125 DOI: 10.1186/s12870-024-05040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The climatic changes crossing the world menace the green life through limitation of water availability. The goal of this study was to determine whether Moringa oleifera Lam. trees cultivated under Tunisian arid climate, retain their tolerance ability to tolerate accentuated environmental stress factors such as drought and salinity. For this reason, the seeds of M. oleifera tree planted in Bouhedma Park (Tunisian arid area), were collected, germinated, and grown in the research area at the National Institute of Research in Rural Engineering, Waters and Forests (INRGREF) of Tunis (Tunisia). The three years aged trees were exposed to four water-holding capacities (25, 50, 75, and 100%) for 60 days to realise this work. RESULTS Growth change was traduced by the reduction of several biometric parameters and fluorescence (Fv/Fm) under severe water restriction (25 and 50%). Whereas roots presented miraculous development in length face to the decrease of water availability (25 and 50%) in their rhizospheres. The sensitivity to drought-induced membrane damage (Malondialdehyde (MDA) content) and reactive oxygen species (ROS) liberation (hydrogen peroxide (H2O2) content) was highly correlated with ROS antiradical scavenging (ferric reducing antioxidant power (FRAP) and (2, 2'-diphenyl-1-picrylhydrazyle (DPPH)), phenolic components and osmolytes accumulation. The drought stress tolerance of M. oleifera trees was associated with a dramatic stimulation of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities. CONCLUSION Based on the several strategies adopted, integrated M. oleifera can grow under drought stress as accentuated adverse environmental condition imposed by climate change.
Collapse
Affiliation(s)
- Afef N Hajaji
- Forest Ecology Laboratory, National Research Institute in Rural Engineering, Water and Forestry, University of Carthage, Bp 10, Ariana, 2080, Tunisia
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Ragaa A E F Hamouda
- Department of Biology, Faculty of Sciences and Arts-Khulais, University of Jeddah, Jeddah, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mejda Abassi
- Forest Ecology Laboratory, National Research Institute in Rural Engineering, Water and Forestry, University of Carthage, Bp 10, Ariana, 2080, Tunisia
| | - Youssef Ammari
- Forest Ecology Laboratory, National Research Institute in Rural Engineering, Water and Forestry, University of Carthage, Bp 10, Ariana, 2080, Tunisia
| |
Collapse
|
2
|
Šeremet D, Durgo K, Kosanović J, Huđek Turković A, Mandura Jarić A, Vojvodić Cebin A, Komes D. Studying the Functional Potential of Ground Ivy ( Glechoma hederacea L.) Extract Using an In Vitro Methodology. Int J Mol Sci 2023; 24:16975. [PMID: 38069297 PMCID: PMC10707382 DOI: 10.3390/ijms242316975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Glechoma hederacea L., known as ground ivy, has a long history of use in folk medicine. The main bioactive compounds in ground ivy are polyphenolic compounds known for their potent antioxidant and antimicrobial activities and thus have high potential as functional ingredients against bacterial infections and the occurrence of chronic diseases associated with oxidative stress in the human body. The aim of the present study was to determine the biological activity of ground ivy extract on selected human cell lines, including hepatic (HepG2), tongue (CAL 27), gastric (AGS) and colon (Caco-2) cancer cell lines by evaluating cytotoxicity, formation of reactive oxygen species and genotoxicity. The antioxidant capacity of the extract was additionally evaluated using cellular model macromolecules of protein and DNA, bovine serum album and plasmid phiX174 RF1 DNA. The effect of ground ivy extract on representatives of human microflora, including L. plantarum, E. coli and S. aureus, was also studied. The cytotoxicity of the extract depended on the type of cells treated, and the pro-oxidant effect generally decreased with increasing exposure time. The most pronounced genoprotective effect against hydroxyl radical damage was monitored in model plasmid DNA and occurred at the highest tested concentration (0.25 mg mL-1), with 95.89% preservation of the supercoiled form of the plasmid. This concentration also had the most significant antioxidant activity on the model protein-14.01% more than the positive control prepared using Trolox. The ground ivy extract showed high antimicrobial potential against the pathogenic bacteria E. coli and S. aureus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Draženka Komes
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (D.Š.); (K.D.); (J.K.); (A.H.T.); (A.M.J.); (A.V.C.)
| |
Collapse
|
3
|
Jorge-Montalvo P, Vílchez-Perales C, Visitación-Figueroa L. Evaluation of antioxidant capacity, structure, and surface morphology of ginger ( Zingiber officinale) using different extraction methods. Heliyon 2023; 9:e16516. [PMID: 37251458 PMCID: PMC10220370 DOI: 10.1016/j.heliyon.2023.e16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The antioxidant capacity of ginger depends on the type of variety, growing conditions, postharvest, drying method, extraction, and measurement, among others. The objective of the research was to compare the efficiency of ultrasound (US), magnetic agitation (AM), maceration (M), and reflux (R) extraction methods. In the GFD (fresh air-dried ginger) extract, the contents of total phenolic content (TFC), 6-gingerol (6-G), and 6-shogaol (6-S) were evaluated; as well as the antioxidant capacity by FRAP (ferric reducing antioxidant power) and IC50 in DPPH (2,2-diphenyl-1-picrylhydrazyl radical). In addition, structural and morphological changes were evaluated with FTIR and SEM, respectively. The results for all extraction methods for TFC, 6-G, and 6-S were between 9.422 and 10.037 mg EAG/g dry matter (dm), 4.072-4.838, and 0.194-0.263 mg/g dm respectively, with the highest values for TFC and 6-G for M and 6-S for R. FRAP and IC50 in DPPH values were between 0.172 and 0.192 mmol Fe2+/g dm and 0.531-0.722 mg dm/mL respectively, presenting higher antioxidant capacity in M and R1, R2, and R3 (1, 2, and 5 h, respectively). Extracts from M and R1 methods presented lower FTIR transmittance values and greater changes in their surface morphology, with folds and breaks in the starch granules by SEM images. It is concluded that extracts with higher antioxidant capacity are obtained using medium polarity solvents such as methanol and with M and R1 methods. Because of the longer extraction time and moderate thermal stress, the structure and surface morphology of the extracted GFD sample showed greater changes on the surface of the starch granules and, consequently, greater extraction of bioactive compounds.
Collapse
Affiliation(s)
- Paola Jorge-Montalvo
- Center for Research in Chemistry, Toxicology and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Carlos Vílchez-Perales
- Department of Nutrition, Faculty of Zootechnic, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lizardo Visitación-Figueroa
- Center for Research in Chemistry, Toxicology and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| |
Collapse
|
4
|
Sławińska N, Kluska M, Moniuszko-Szajwaj B, Stochmal A, Woźniak K, Olas B. New Aspect of Composition and Biological Properties of Glechoma hederacea L. Herb: Detailed Phytochemical Analysis and Evaluation of Antioxidant, Anticoagulant Activity and Toxicity in Selected Human Cells and Plasma In Vitro. Nutrients 2023; 15:nu15071671. [PMID: 37049509 PMCID: PMC10096585 DOI: 10.3390/nu15071671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
It is known that phenolic compounds can alleviate the negative impact of oxidative stress and modulate hemostasis. However, the effect of extracts and phenolics from Glechoma hederacea L. on the biomarkers of these processes is not well documented. The aim of our study was to investigate the in vitro protective effects of one extract and three fractions (20, 60, and 85% fraction) from G. hederacea L. on oxidative stress and hemostasis. Phytochemical analysis showed that aerial parts of G. hederacea L. are rich in both phenolic acids (such as rosmarinic acid, neochlorogenic acid, and chlorogenic acid) and flavonoids (mainly rutin and glycoside derivatives of apigenin, quercetin, and luteolin). We observed that the 85% fraction (at three concentrations: 5, 10, and 50 μg/mL) inhibited protein carbonylation. Moreover, the extract and 85% fraction (at the concentration of 50 μg/mL) could reduce lipid peroxidation. All fractions and the extract were very effective at decreasing H2O2-induced DNA damage in PBM cells. The 85% fraction had the strongest protective potential against DNA oxidative damage. We also observed that the extract and fractions decreased PBM cell viability to a maximum of 65% after 24 h incubation. Our results indicate that the 85% fraction showed the strongest antioxidant potential. The main component of the 85% fraction was apigenin (26.17 ± 1.44 mg/g), which is most likely responsible for its strong antioxidant properties.
Collapse
Affiliation(s)
- Natalia Sławińska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Magdalena Kluska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
- Correspondence:
| |
Collapse
|
5
|
Malarz J, Michalska K, Galanty A, Kiss AK, Stojakowska A. Constituents of Pulicaria inuloides and Cytotoxic Activities of Two Methoxylated Flavonols. Molecules 2023; 28:molecules28020480. [PMID: 36677535 PMCID: PMC9866601 DOI: 10.3390/molecules28020480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Plants of the genus Pulicaria are known for providing traditional medicines, spices, herbal teas, and insect deterrents. Pulicaria inuloides (Poir.). DC. is one of the less chemically studied species within the genus. Hydroalcoholic extracts from roots and aerial parts of P. inuloides were analyzed using the UHPLC-PAD-MSn technique and revealed the presence of six caffeoylquinic and eleven caffeoylhexaric conjugates together with hydroxykaempferol dimethyl ether and quercetagetin trimethyl ether. Moreover, constituents of chloroform extract from the whole P. inuloides plants were isolated and identified by spectroscopic methods. One new and four known caryophyllene derivatives, three thymol derivatives, and four polymethoxylated flavonols were found in the analyzed extract. The structure of the new compound was established by spectroscopic methods (HRESIMS, 1H NMR, 13C NMR, COSY, HSQC, HMBC, NOESY). The cytotoxicity of 6-Hydroxykaempferol 3,7-dimethyl ether and quercetagetin 3,7,3’-trimethyl ether (chrysosplenol C), which are major flavonols isolated from the plant, were tested on prostate epithelial cells (PNT2), prostate cancer cells (DU145 and PC3), human keratinocytes (HaCaT), and melanoma cells (HTB140 and A375). Both flavonols demonstrated moderate cytotoxic activity against PC3 cells (IC50 = 59.5 µM and 46.6 µM, respectively). The remaining cell lines were less affected (IC50 > 150 µM).
Collapse
Affiliation(s)
- Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| | - Klaudia Michalska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna Street 9, 30-688 Kraków, Poland
| | - Anna Karolina Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
- Correspondence: ; Tel.: +48-12-662-32-54
| |
Collapse
|
6
|
Malarz J, Galanty A, Stojakowska A. Chemical Composition and Cytotoxic Activity of Extracts from Carpesium divaricatum: In Vitro- versus Field-Grown Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:2815. [PMID: 36365268 PMCID: PMC9659292 DOI: 10.3390/plants11212815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Carpesium divaricatum Sieb. & Zucc. is a plant species rich in terpenoids of anti-inflammatory and cytotoxic activity, especially germacranolides of potential medicinal value. The present study describes in vitro multiplication of C. divaricatum, analysis of active constituents in the multiple shoots, and assessment of cytotoxic activities of extracts prepared from in vitro- and field-grown plants. The plant extracts were evaluated for cytotoxicity using two melanoma cell lines (HTB140 and A375); human keratinocytes (HaCaT); two colon cancer cell lines (Caco2 and HT29); human hepatocellular carcinoma cells (HepG2); two lines of prostate cancer cells (DU145 and PC3) and prostate epithelial cells (PNT2). Chemical compositions of the assayed extracts were analyzed by HPLC/DAD, in reference to isolated compounds. Maximum of 4.07 ± 1.61 shoots regenerated from a nodal explant of C. divaricatum, cultivated in a liquid MS medium supplemented with thidiazuron (1 μM). In vitro grown shoots and plantlets of C. divaricatum accumulated terpenoids that are known as active constituents of the intact plant. Cytotoxic activity of the extracts prepared from the in vitro cultured plants was like that demonstrated by the extracts prepared from field-grown plants and seemed to be more selective than cytotoxicities of the individual germacranolides.
Collapse
Affiliation(s)
- Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna Street 9, 30-688 Kraków, Poland
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|