1
|
Chen W, Niu T, Lian W, Ye T, Sun Q, Zhang J. Involvement of endogenous IAA and ABA in the regulation of arbuscular mycorrhizal fungus on rooting of tea plant (Camellia sinensis L.) cuttings. BMC PLANT BIOLOGY 2024; 24:1266. [PMID: 39731000 DOI: 10.1186/s12870-024-05955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Adventitious root (AR) formation is the key step for successful cutting propagation of tea plants (Camellia sinensis L.). Studies showed that arbuscular mycorrhizal fungus (AMF) can promote the rooting ability, and auxin pathway in basal stem of cuttings was involved in this process. However, auxin and abscisic acid (another important regulator on AR formation) in the other parts of cuttings at different rooting stages responding to AMF inoculation are not well studied. Therefore, in this paper, contents, enzymes and genes related to these two plant hormones were comprehensively determined aiming to unveil how endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) involve in the AMF regulating AR development of tea cuttings. RESULTS Inoculating with AMF significantly increased the proportion of cuttings at S2 stage (AR formation), which was more than twice as much as the control. And the total rooting rate in mycorrhizal treatment was also higher than that in the control with an increase of 8.66%. Enzyme activity assays showed that except for decreased polyphenol oxidase (PPO) activity at the S3 stage and peroxidase (POD) activity in middle stem of S3 stage, AMF inoculation increased activities of POD, PPO, superoxide dismutase (SOD) and catalase (CAT) to varying degrees in leaf, middle stem and basal stem of tea cuttings. After inoculation with AMF, the indoleacetic acid oxidase (IAAO) activity decreased to a certain extent in the first three stages of tea cuttings, which showed a trend of 'low-high-low' in the basal stem of all treatments. Besides, there was a significantly positive correlation between SOD activity and AR formation, especially for the proportion of cuttings at S2 and S3 stages. Higher IAA level and IAA/ABA ratio was found in basal stem of cuttings at S1 stage induced by AMF, which promoting the AR formation as revealed by correlation analysis. At the same time, AMF significantly elevated the level of IAA in leaf at S1 stage. By screening differentially expressed genes (DEGs) related to IAA and ABA pathways, together with redundant analysis, it was indicated that auxin biosynthesis and transport, as well as ABA transport and signal transduction, were involved in AMF regulating the rooting of tea cuttings. CONCLUSIONS Overall, both endogenous IAA and ABA played roles in the regulation of AR formation of tea cuttings by AMF inoculating, enriching the theoretical basis of AMF regulating rooting of cuttings and providing foundations for cutting propagation of tea plants.
Collapse
Affiliation(s)
- Weili Chen
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China
| | - Tingting Niu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China
| | - Wenxu Lian
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China
| | - Tao Ye
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China
| | - Qinyu Sun
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China
| | - Jiaxia Zhang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China.
| |
Collapse
|
2
|
Zhang F, Li D, Sa R, Wang L, Sheng Y. Cloning and Function Analysis of the CsTAU1 in Response to Salt-Alkali Stress. Genes (Basel) 2024; 15:613. [PMID: 38790241 PMCID: PMC11120846 DOI: 10.3390/genes15050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
To investigate the role of candidate genes for salt-alkali tolerance in cucumber (Cucumis sativus L.), this study screened CsTAU1 in the glutathione pathway from previous transcriptome data for cloning and functional analysis. Clone cucumber CsTAU1 contains one 675 bp open reading frame, containing one GST-N-Tau domain and one GST-C-Tau domain, and is expressed in cytoplasm. After successfully constructing overexpression vectors of CsTAU1 (+) and CsTAU1 (-), they were transferred into cucumber varieties 'D1909' (high salt alkali resistance) and 'D1604' (low salt alkali resistance) for salt-alkali resistance identification. It was found that under salt-alkali stress, CsTAU1 (+)-overexpressing plants showed strong resistance to salt-alkali stress, while CsTAU1 (-)-overexpressing plants showed the opposite situation. qRT-PCR analysis was performed on other glutathione pathway-related genes in CsTAU1-overexpressing plants. The expression patterns of LOC101219529 and LOC105434443 were the same as CsTAU1, and the introduction of CsTAU1 (+) increased the chlorophyll, α-Naphthylamine oxidation, glutathione S-transferase (GST), and catalase (CAT) content of cucumber. The research results provide a theoretical basis for cultivating salt-alkali-tolerant cucumber varieties.
Collapse
Affiliation(s)
| | | | | | | | - Yunyan Sheng
- Horticulture and Landscape Department, Heilongjiang Bayi Agriculture University, Daqing 163000, China; (F.Z.); (D.L.); (R.S.); (L.W.)
| |
Collapse
|
3
|
Libao C, Shiting L, Chen Z, Shuyan L. NnARF17 and NnARF18 from lotus promote root formation and modulate stress tolerance in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:163. [PMID: 38431568 PMCID: PMC10908128 DOI: 10.1186/s12870-024-04852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Auxin response factors (ARFs) play a crucial role in regulating gene expression within the auxin signal transduction pathway, particularly during adventitious root (AR) formation. In this investigation, we identified full-length sequences for ARF17 and ARF18, encompassing 1,800 and 2,055 bp, encoding 599 and 684 amino acid residues, respectively. Despite exhibiting low sequence homology, the ARF17- and ARF18-encoded proteins displayed significant structural similarity and shared identical motifs. Phylogenetic analysis revealed close relationships between NnARF17 and VvARF17, as well as NnARF18 and BvARF18. Both ARF17 and ARF18 demonstrated responsiveness to exogenous indole-3-acetic acid (IAA), ethephon, and sucrose, exhibiting organ-specific expression patterns. Beyond their role in promoting root development, these ARFs enhanced stem growth and conferred drought tolerance while mitigating waterlogging stress in transgenic Arabidopsis plants. RNA sequencing data indicated upregulation of 51 and 75 genes in ARF17 and ARF18 transgenic plants, respectively, including five and three genes associated with hormone metabolism and responses. Further analysis of transgenic plants revealed a significant decrease in IAA content, accompanied by a marked increase in abscisic acid content under normal growth conditions. Additionally, lotus seedlings treated with IAA exhibited elevated levels of polyphenol oxidase, IAA oxidase, and peroxidase. The consistent modulation of IAA content in both lotus and transgenic plants highlights the pivotal role of IAA in AR formation in lotus seedlings.
Collapse
Affiliation(s)
- Cheng Libao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| | - Liang Shiting
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Zhao Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| |
Collapse
|
4
|
Li C, Lu X, Liu Y, Xu J, Yu W. Trehalose alleviates the inhibition of adventitious root formation caused by drought stress in cucumber through regulating ROS metabolism and activating trehalose and plant hormone biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108159. [PMID: 37944244 DOI: 10.1016/j.plaphy.2023.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Trehalose (Tre) plays a vital role in response to drought stress in plants but its regulatory mechanism remains unclear. Here, this study explores the mechanism of re-regulated drought tolerance during cucumber adventitious root formation. Our results indicate that 2 mM Tre displays remarkable drought alleviation in the aspect of root number, root length, fresh weight, and dry weight. Under drought stress, Tre could inhibit greatly the MDA, H2O2, and O2- accumulation, enhance obviously the activities of SOD, POD, and CAT enzymes and up-regulate significantly the transcript levels of SOD, POD, and CAT genes. Furthermore, Tre treatment also promotes Tre metabolism during drought stress: significantly increases starch and Tre contents and decreases glucose content, the biosynthesis enzymatic activity of the Tre metabolic pathway including TPS and TPP are enhanced and the activity of degradation enzyme THL is decreased, and corresponding genes TPS1, TPS2, TPPA, and TPPB are up-regulated. Tre significantly reversed the decrease caused by PEG in IAA, ethylene, ABA, and BR contents and the increase caused by PEG in GA3 and KT contents. Collectively, Tre appears to be the effective treatment in counteracting the negative effects of drought stress during adventitious root formation by regulating ROS, Tre metabolisms and plant hormones.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Fu H, Wei X, Chen Q, Yong S, Liu Q, Dang J, Wu D, Liang G, Guo Q. Comparative transcriptome analysis of molecular mechanisms underlying adventitious root developments in Huangshan Bitter tea ( Camellia gymnogyna Chang) under red light quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1154169. [PMID: 37025148 PMCID: PMC10070859 DOI: 10.3389/fpls.2023.1154169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
As the formation of adventitious roots (AR) is an important component of in vitro regeneration of tea plants, the propagation and preservation of Huangshan Bitter tea (Camellia gymnogyna Chang) cuttings have been hindered due to its lower rooting rate. As light is a crucial environmental factor that affects AR formation, this study aimed to investigate the special role of red light (RL) in the formation of AR in Huangshan Bitter tea plants, which has not been well understood. Huangshan Bitter tea plants were induced with white light (control, WL) and red light (660 nm, RL) qualities 36 days after induced treatment (DAI) to investigate dynamic AR formation and development, anatomical observation, hormones content change, and weighted gene co-expression network analysis (WGCNA) of the transcriptome. Results showed that RL promoted the rooting rate and root characteristics compared to WL. Anatomical observations demonstrated that root primordium was induced earlier by RL at the 4 DAI. RL positively affected IAA, ZT and GA3 content and negatively influenced ABA from the 4 to 16 DAI. RNA-seq and analysis of differential expression genes (DEGs) exhibited extensive variation in gene expression profiles between RL and WL. Meanwhile, the results of WGCNA and correlation analysis identified three highly correlated modules and hub genes mainly participated in 'response to hormone', 'cellular glucan metabolic progress', and 'response to auxin'. Furthermore, the proportion of transcription factors (TFs) such as ethylene response factor (ERF), myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WRKYGQK (WRKY) were the top four in DEGs. These results suggested that the AR-promoting potential of red light was due to complex hormone interactions in tea plants by regulating the expression of related genes. This study provided an important reference to shorten breeding cycles and accelerate superiority in tea plant propagation and preservation.
Collapse
Affiliation(s)
- Hao Fu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
| | - Xu Wei
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Qian Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
| | - Shunyuan Yong
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
| | - Qinjin Liu
- Chongqing Institute of Ancient Tea Plant and Product, Chongqing, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
- Chongqing Institute of Ancient Tea Plant and Product, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
- Chongqing Institute of Ancient Tea Plant and Product, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
- Chongqing Institute of Ancient Tea Plant and Product, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
| |
Collapse
|