1
|
Liu C, Wu Y, Zou Y, Wang J, Li B, Ma Y, Zhang X, Wang W. Development and characterization of gastro-floating sustained-release granules for enhanced bioavailability of patchouli oil. Heliyon 2024; 10:e40374. [PMID: 39669168 PMCID: PMC11635734 DOI: 10.1016/j.heliyon.2024.e40374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Patchouli oil (PO), extracted from Pogostemon cablin Benth., a prominent aromatic plant of the Lamiaceae family, has shown considerable protective effects against gastrointestinal infections, particularly those induced by Helicobacter pylori. This study aimed to develop a gastro-floating multi-unit system for PO to enhance its gastric retention and oral bioavailability. Methods The oil-laden granules were prepared using colloidal silicon dioxide (CSD) for oil adsorption and to provide buoyancy, along with ethyl cellulose (EC) and hydroxypropyl methyl cellulose (HPMC) to form a sustained-release matrix. The CSD exhibited favorable characteristics for oil adsorption and floating. Compatibility between PO and CSD was affirmed through DSC thermograms and FTIR spectra. The obtained granules demonstrated a sustained release profile, achieving over 90 % release within 10 h without an initial burst. After oral administration, the granules were observed to remain in the gastric region of rats for over 7 h. The bioavailability of patchouli alcohol from the optimized granules was significantly higher than that from of the PO-loaded powders. The gastro-floating sustained-release granules, based on a CSD/EC/HPMC matrix, offer a simple yet effective strategy to improve the delivery efficacy of PO against Helicobacter pylori infections in the gastric region.
Collapse
Affiliation(s)
- Chen Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanan Wu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yeli Zou
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiao Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Boli Li
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanni Ma
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenping Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| |
Collapse
|
2
|
Aborabu AAS, Tayel AA, Assas M, Moussa SH, Alalawy AI, Almutairi FM, Omar AA. Anti-Helicobacter pylori activity of nanocomposites from chitosan/broccoli mucilage/selenium nanoparticles. Sci Rep 2024; 14:21693. [PMID: 39289449 PMCID: PMC11408496 DOI: 10.1038/s41598-024-65762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Helicobacter pylori can infect most people worldwide to cause hazardous consequences to health; the bacteria could not easily be controlled or disinfected. Toward exploring of innovative biocidal nanoformulations to control H. pylori, broccoli seeds (Brassica oleracea var. italica) mucilage (MBS) was employed for biosynthesizing selenium nanoparticles (MBS/SeNPs), which was intermingled with chitosan nanoparticles (NCT) to generate bioactive nanocomposites for suppressing H. pylori. The MBS could effectually generate and stabilize SeNPs with 13.61 nm mean diameter, where NCT had 338.52 nm mean diameter and positively charged (+ 39.62 mV). The cross-linkages between NCT-MBS-SeNPs were verified via infrared analysis and the nanocomposites from NCT:MBS/SeNPs at 1:2 (T1), 1:1 (T2) and 2:1 (T3) ratios had mean diameters of 204, 132 and 159 nm, respectively. The entire nanomaterials/composites exhibited potent anti- H. pylori activities using various assaying methods; the T2 nanocomposite was the utmost bactericidal agent with 0.08-0.10 mg/L minimal concentration and 25.9-27.3 mm inhibition zones. The scanning microscopy displayed the ability of nanocomposite to attach the bacterial cells, disrupt their membranes, and completely lyse them within 10 h. The NCT/MBS/SeNPs nanocomposites provided effectual innovative approach to control H. pylori.
Collapse
Affiliation(s)
- Ahlam A S Aborabu
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ahmed A Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
- Academy of Scientific Research & Technology (ASRT), Cairo, 11516, Egypt.
| | - Mona Assas
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Shaaban H Moussa
- Department of Biology, College of Science and Humanitarian Studies, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | - Adel I Alalawy
- Biochemistry Department, Faculty of Science, University of Tabuk, 47512, Tabuk, Saudi Arabia
| | - Fahad M Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, 47512, Tabuk, Saudi Arabia
| | - Amira A Omar
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
3
|
Hu E, Li Z, Li T, Yang X, Ding R, Jiang H, Su H, Cheng M, Yu Z, Li H, Tang T, Wang Y. A novel microbial and hepatic biotransformation-integrated network pharmacology strategy explores the therapeutic mechanisms of bioactive herbal products in neurological diseases: the effects of Astragaloside IV on intracerebral hemorrhage as an example. Chin Med 2023; 18:40. [PMID: 37069580 PMCID: PMC10108474 DOI: 10.1186/s13020-023-00745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The oral bioavailability and blood-brain barrier permeability of many herbal products are too low to explain the significant efficacy fully. Gut microbiota and liver can metabolize herbal ingredients to more absorbable forms. The current study aims to evaluate the ability of a novel biotransformation-integrated network pharmacology strategy to discover the therapeutic mechanisms of low-bioavailability herbal products in neurological diseases. METHODS A study on the mechanisms of Astragaloside IV (ASIV) in treating intracerebral hemorrhage (ICH) was selected as an example. Firstly, the absorbed ASIV metabolites were collected by a literature search. Next, the ADMET properties and the ICH-associated targets of ASIV and its metabolites were compared. Finally, the biotransformation-increased targets and biological processes were screened out and verified by molecular docking, molecular dynamics simulation, and cell and animal experiments. RESULTS The metabolites (3-epi-cycloastragenol and cycloastragenol) showed higher bioavailability and blood-brain barrier permeability than ASIV. Biotransformation added the targets ASIV in ICH, including PTK2, CDC42, CSF1R, and TNF. The increased targets were primarily enriched in microglia and involved in cell migration, proliferation, and inflammation. The computer simulations revealed that 3-epi-cycloastragenol bound CSF1R and cycloastragenol bound PTK2 and CDC42 stably. The In vivo and in vitro studies confirmed that the ASIV-derived metabolites suppressed CDC42 and CSF1R expression and inhibited microglia migration, proliferation, and TNF-α secretion. CONCLUSION ASIV inhibits post-ICH microglia/macrophage proliferation and migration, probably through its transformed products to bind CDC42, PTK2, and CSF1R. The integrated strategy can be used to discover novel mechanisms of herbal products or traditional Chinses medicine in treating diseases.
Collapse
Affiliation(s)
- En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhilin Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Xueping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Ruoqi Ding
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Haoying Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Hong Su
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Menghan Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, People's Republic of China, 410219
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| |
Collapse
|
4
|
Alomar HA, Elkady WM, Abdel-Aziz MM, Ibrahim TA, Fathallah N. Anti- Heliobacter pylori and Anti-Inflammatory Potential of Salvia officinalis Metabolites: In Vitro and In Silico Studies. Metabolites 2023; 13:136. [PMID: 36677061 PMCID: PMC9865027 DOI: 10.3390/metabo13010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Due to its rising antibiotic resistance and associated inflammations, Helicobacter pylori poses a challenge in modern medicine. Salvia officinalis, a member of the Lamiaceae family, is a promising medicinal herb. In this regard, a phytochemical screening followed by GC-MS and LC-MS was done to evaluate the chemical profile of the total ethanolic extract (TES) and the essential oil, respectively. The anti-H. pylori and the anti-inflammatory activities were evaluated by a micro-well dilution technique and COX-2 inhibition assay. Potential anti-H. pylori inhibitors were determined by an in silico study. The results revealed that the main metabolites were flavonoids, sterols, volatile oil, saponins, and carbohydrates. The LC-MS negative ionization mode demonstrated 12 compounds, while GC-MS showed 21 compounds. Carnosic acid (37.66%), epirosmanol (20.65%), carnosol1 (3.3%), and 12-O-methyl carnosol (6.15%) were predominated, while eucalyptol (50.04%) and camphor (17.75%) were dominant in LC-MS and GC-MS, respectively. TES exhibited the strongest anti-H. pylori activity (3.9 µg/mL) asymptotic to clarithromycin (0.43 µg/mL), followed by the oil (15.63 µg/mL). Carnosic acid has the best-fitting energy to inhibit H. pylori (-46.6769 Kcal/mol). TES showed the highest reduction in Cox-2 expression approaching celecoxib with IC50 = 1.7 ± 0.27 µg/mL, followed by the oil with IC50 = 5.3 ± 0.62 µg/mL. Our findings suggest that S. officinalis metabolites with anti-inflammatory capabilities could be useful in H. pylori management. Further in vivo studies are required to evaluate and assess its promising activity.
Collapse
Affiliation(s)
- Hatun A. Alomar
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wafaa M. Elkady
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Marwa M. Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt
| | - Taghreed A. Ibrahim
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Noha Fathallah
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
5
|
Ani NI, Okolo KO, Offiah RO. Evaluation of antibacterial, antioxidant, and anti-inflammatory properties of GC/MS characterized methanol leaf extract of Terminalia superba (Combretaceae, Engl. & Diels). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-022-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Terminalia superba is a well-known medicinal plant used in folk medicine for the management of various diseases and swelling. Validation of its efficacy in standardized scientific models is lacking. This gap needs to be filled as a way of enhancing modern drug discovery. The aim is to evaluate the antibacterial, antioxidant, and anti-inflammatory properties of T. superba in known and established models. Also, to establish and possibly correlate the established activity with the phytochemicals identified using GC/MS and qualitative methods.
Results
The result showed a dose-dependent percentage inhibition of DPPH, HO•, and Fe3+ reducing activity. The antibacterial activity showed dose-dependent significant (p < 0.05) inhibition against all the organisms used. The anti-inflammatory activity of METS was confirmed in the carrageenan model with significant (p < 0.05) inhibition of paw volume when compared to control while significantly decreasing (p < 0.05) weight of xylene-induced ear. For instance, after 6 h, there was a reduction of 42%, 33%, and 22% for diclofenac, 200 mg, and 100 mg, respectively, as against 4% in control. The significant (p < 0.05) increase in MDA was attenuated by the treatment with METS dose dependently. Phytochemical assay and GC/MS characterization showed that alkaloids, saponins, phenols, quinone, tannins, coumarins, proteins, flavonoids, and amino acids were dominant with fatty acids accounting for 53%. Others are esters (23%), organic compounds (12%), alkanes (9%), and carboxylic acids (3%).
Conclusions
T. superba possesses antioxidant, antibacterial, and anti-inflammatory properties which are believed to arise from the secondary metabolites observed in the GC–MS characterization.
Graphical Abstract
Collapse
|