1
|
Kamalesh R, Saravanan A, Yaashikaa PR, Vijayasri K. Innovative approaches to harnessing natural pigments from food waste and by-products for eco-friendly food coloring. Food Chem 2025; 463:141519. [PMID: 39368203 DOI: 10.1016/j.foodchem.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
With unprecedented growth in the world population, the demand for food has risen drastically leading to increased agricultural production. One promising avenue is recovery of value-added pigments from food waste which has been gaining global attention. This review focuses on sustainable strategies for extracting pigments, examining the factors that influence extraction, their applications, and consumer acceptability. The significant findings of the study state the efficiency of pigment extraction through innovative extraction techniques rather than following conventional methods that are time-consuming, and unsustainable. In addition to their vibrant colors, these pigments provide functional benefits such as antioxidant properties, extended shelf life and improved food quality. Societal acceptance of pigments derived from food waste is positively driven by environmental awareness and sustainability. The study concludes by highlighting the stability challenges associated with various natural pigments, emphasizing the need for tailored stabilization methods to ensure long-term stability and effective utilization in food matrices.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
2
|
Araya V, Gatica M, Uribe E, Román J. In Silico Analysis of the Molecular Interaction between Anthocyanase, Peroxidase and Polyphenol Oxidase with Anthocyanins Found in Cranberries. Int J Mol Sci 2024; 25:10437. [PMID: 39408771 PMCID: PMC11476609 DOI: 10.3390/ijms251910437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024] Open
Abstract
Anthocyanins are bioactive compounds responsible for various physiological processes in plants and provide characteristic colors to fruits and flowers. Their biosynthetic pathway is well understood; however, the enzymatic degradation mechanism is less explored. Anthocyanase (β-glucosidase (BGL)), peroxidase (POD), and polyphenol oxidase (PPO) are enzymes involved in degrading anthocyanins in plants such as petunias, eggplants, and Sicilian oranges. The aim of this work was to investigate the physicochemical interactions between these enzymes and the identified anthocyanins (via UPLC-MS/MS) in cranberry (Vaccinium macrocarpon) through molecular docking to identify the residues likely involved in anthocyanin degradation. Three-dimensional models were constructed using the AlphaFold2 server based on consensus sequences specific to each enzyme. The models with the highest confidence scores (pLDDT) were selected, with BGL, POD, and PPO achieving scores of 87.6, 94.8, and 84.1, respectively. These models were then refined using molecular dynamics for 100 ns. Additionally, UPLC-MS/MS analysis identified various flavonoids in cranberries, including cyanidin, delphinidin, procyanidin B2 and B4, petunidin, pelargonidin, peonidin, and malvidin, providing important experimental data to support the study. Molecular docking simulations revealed the most stable interactions between anthocyanase and the anthocyanins cyanidin 3-arabinoside and cyanidin 3-glucoside, with a favorable ΔG of interaction between -9.3 and -9.2 kcal/mol. This study contributes to proposing a degradation mechanism and seeking inhibitors to prevent fruit discoloration.
Collapse
Affiliation(s)
| | | | | | - Juan Román
- Laboratorio Enzimología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (V.A.); (M.G.); (E.U.)
| |
Collapse
|
3
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Alginate Beads with Encapsulated Bioactive Substances from Mangifera indica Peels as Promising Peroral Delivery Systems. Foods 2024; 13:2404. [PMID: 39123595 PMCID: PMC11311377 DOI: 10.3390/foods13152404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since various bioactive substances are unstable and can degrade in the gastrointestinal tract, their stabilization is crucial. This study aimed to encapsulate mango peel extract (MPE) into edible alginate beads using the ionotropic gelation method for the potential oral delivery of bioactive substances. Mango peels, generally discarded and environmentally harmful, are rich in health-promoting bioactive substances. The alginate beads were examined for entrapment efficiency, particle size, morphology, thermal stability, physiochemical interactions, release profile under gastrointestinal conditions, and antibacterial efficacy. The study demonstrated the successful encapsulation of MPE with an efficiency of 63.1%. The in vitro release study showed the stability of the alginate beads in simulated gastric fluid with a maximum release of 45.0%, and sustained, almost complete release (99.4%) in simulated intestinal fluid, indicating successful absorption into the human body. In both fluids, the MPE release followed first-order kinetics. Encapsulation successfully maintained the antibacterial properties of MPE, with significant inhibitory activity against pathogenic intestinal bacteria. This is the first study on MPE encapsulation in alginate beads, presenting a promising oral delivery system for high-added-value applications in the food industry for dietary supplements, functional foods, or food additives. Their production is sustainable and economical, utilizing waste material and reducing environmental pollution.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Oppedisano F, Nesci S, Spagnoletta A. Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism. Crit Rev Biochem Mol Biol 2024; 59:199-220. [PMID: 38993040 DOI: 10.1080/10409238.2024.2377094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD+-dependent histone deacetylases and ADP-ribosyltransferases. NAD+-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD+ binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys280. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-Università di Bologna, Ozzano Emilia, Italy
| | - Anna Spagnoletta
- Laboratory "Regenerative Circular Bioeconomy", ENEA-Trisaia Research Centre, Rotondella, Italy
| |
Collapse
|
5
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
6
|
Tzanova MT, Yaneva Z, Ivanova D, Toneva M, Grozeva N, Memdueva N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024; 13:605. [PMID: 38397582 PMCID: PMC10887973 DOI: 10.3390/foods13040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers associate the color of food with its freshness and quality. More and more attention is being paid to natural colorants that bring additional health benefits to humans. Such natural substances are the carotenoids (yellow to orange), the anthocyanins (red to blue), and the betalains (red and yellow), which are very sensitive to exposure to light, air, high temperatures, and chemicals. Stability and diversity in terms of color can be optimized by using environmentally friendly and selective extraction processes that provide a balance between efficacy, safety, and stability of the resulting extracts. Green solvents like water, supercritical fluids, natural deep eutectic solvents, and ionic liquids are the most proper green solvents when combined with different extraction techniques like maceration, supercritical extraction, and ultrasound-assisted or microwave-assisted extraction. The choice of the right extracting agent is crucial for the selectivity of the extraction method and the stability of the prepared colorant. The present work reviews the green solvents used for the extraction of natural food colorants from plants and focuses on the issues related to the selectivity and stability of the products extracted.
Collapse
Affiliation(s)
- Milena Tankova Tzanova
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
- Medical Faculty, Department of Medicinal Chemistry and Biochemistry, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Monika Toneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Neli Grozeva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Neli Memdueva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| |
Collapse
|
7
|
Kučuk N, Primožič M, Kotnik P, Knez Ž, Leitgeb M. Mango Peels as an Industrial By-Product: A Sustainable Source of Compounds with Antioxidant, Enzymatic, and Antimicrobial Activity. Foods 2024; 13:553. [PMID: 38397530 PMCID: PMC10888073 DOI: 10.3390/foods13040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Plant waste materials are important sources of bioactive compounds with remarkable health-promoting benefits. In particular, industrial by-products such as mango peels are sustainable sources of bioactive substances, with antioxidant, enzymatic, and antimicrobial activity. Appropriate processing is essential to obtain highly bioactive compounds for further use in generating value-added products for the food industry. The objective of the study was to investigate and compare the biological activity of compounds from fresh and dried mango peels obtained by different conventional methods and unconventional extraction methods using supercritical fluids (SFE). The highest total phenolic content (25.0 mg GAE/g DW) and the total content of eight phenolic compounds (829.92 µg/g DW) determined by LC-MS/MS were detected in dried mango peel extract obtained by the Soxhlet process (SE). SFE gave the highest content of proanthocyanidins (0.4 mg PAC/g DW). The ethanolic ultrasonic process (UAE) provided the highest antioxidant activity of the product (82.4%) using DPPH radical scavenging activity and total protein content (2.95 mg protein/g DW). Overall, the dried mango peels were richer in bioactive compounds (caffeic acid, chlorogenic acid, gallic acid, catechin, and hesperidin/neohesperidin), indicating successful preservation during air drying. Furthermore, outstanding polyphenol oxidase, superoxide dismutase (SOD), and lipase activities were detected in mango peel extracts. This is the first study in which remarkable antibacterial activities against the growth of Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) were evaluated by determining the microbial growth inhibition rate after 12 and 24 h incubation periods for mango peel extracts obtained by different methods. Ethanolic SE and UAE extracts from dried mango peels resulted in the lowest minimum inhibitory concentrations (MIC90) for all bacterial species tested. Mango peels are remarkable waste products that could contribute to the sustainable development of exceptional products with high-added value for various applications, especially as dietary supplements.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
| | - Petra Kotnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
8
|
Mileti O, Baldino N, Filice F, Lupi FR, Sinicropi MS, Gabriele D. Formulation Study on Edible Film from Waste Grape and Red Cabbage. Foods 2023; 12:2804. [PMID: 37509896 PMCID: PMC10379064 DOI: 10.3390/foods12142804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Recent research on the valorization of agro-industrial waste has attempted to obtain new products. Grape residue is a waste product used in the grape wine industry that is rich in anthocyanins, as well as leaves and waste parts from red cabbage processing. Anthocyanins, thanks to their various functionalities, can be recovered and used as active and intelligent agents in food packaging. Anthocyanins have antioxidant properties that help to prevent cardiovascular disease. (2) Methods: In this study, the process of extracting waste was studied using solvent and supercritical CO2 extraction. The obtained anthocyanins were used in starch-based food film formulations. Several formulations were studied using rheometric techniques and the effect of adding anthocyanins on optimal film formulation was investigated. (3) Results: Solvent extractions resulted in a maximum extraction yield. The extracts obtained were used for the preparation of coating and edible films, optimized in the formulation. (4) Conclusions: The addition of anthocyanins to films resulted in increased sample structuring and mechanical properties that are valid for applications, like dipping using coverage methods. The packaging is also attractive and pH-sensitive.
Collapse
Affiliation(s)
- Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Noemi Baldino
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Francesco Filice
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, I-87036 Rende, CS, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| |
Collapse
|
9
|
Lis K, Bartuzi Z. Plant Food Dyes with Antioxidant Properties and Allergies-Friend or Enemy? Antioxidants (Basel) 2023; 12:1357. [PMID: 37507897 PMCID: PMC10376437 DOI: 10.3390/antiox12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Color is an important food attribute which increases its attractiveness, thus influencing consumer preferences and acceptance of food products. The characteristic color of fresh, raw food is due to natural dyes present in natural food sources. Food loses its natural color during processing or storage. Loss of natural color (e.g., graying) often reduces the appeal of a product to consumers. To increase the aesthetic value of food, natural or synthetic dyes are added to it. Interestingly, the use of food coloring to enhance food attractiveness and appetizing appearance has been practiced since antiquity. Food coloring can also cause certain health effects, both negative and positive. Dyes added to food, both natural and synthetic, are primarily chemical substances that may not be neutral to the body. Some of these substances have strong antioxidant properties. Thanks to this activity, they can also perform important pro-health functions, including antiallergic ones. On the other hand, as foreign substances, they can also cause various adverse food reactions, including allergic reactions of varying severity and anaphylactic shock. This article discusses food dyes of plant origins with antioxidant properties (anthocyanins, betanins, chlorophylls, carotenoids, and curcumin) and their relationship with allergy, both as sensitizing agents and immunomodulatory agents with potential antiallergic properties.
Collapse
Affiliation(s)
- Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
10
|
Bai X, Zhou L, Zhou L, Cang S, Liu Y, Liu R, Liu J, Feng X, Fan R. The Research Progress of Extraction, Purification and Analysis Methods of Phenolic Compounds from Blueberry: A Comprehensive Review. Molecules 2023; 28:molecules28083610. [PMID: 37110844 PMCID: PMC10140916 DOI: 10.3390/molecules28083610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Blueberry is the source of a variety of bioactive substances, including phenolic compounds, such as anthocyanins, pterostilbene, phenolic acids, etc. Several studies have revealed that polyphenols in blueberry have important bioactivities in maintaining health, such as antioxidant and anti-tumor activities, immune regulation, the prevention of chronic diseases, etc. Therefore, these phenolic compounds in blueberries have been widely used in the field of healthcare, and the extraction, isolation, and purification of phenolic compounds are the prerequisites for their utilization. It is imperative to systematically review the research progress and prospects of phenolic compounds present in blueberries. Herein, the latest progress in the extraction, purification, and analysis of phenolic compounds from blueberries is reviewed, which can in turn provide a foundation for further research and usage of blueberries.
Collapse
Affiliation(s)
- Xinyu Bai
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lin Zhou
- Department of Food Science, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Li Zhou
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Song Cang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Yuhan Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Rui Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Jie Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
11
|
Nath PC, Ojha A, Debnath S, Sharma M, Nayak PK, Sridhar K, Inbaraj BS. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals (Basel) 2023; 13:1366. [PMID: 37106930 PMCID: PMC10134991 DOI: 10.3390/ani13081366] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The growing population and healthy food demands have led to a rise in food waste generation, causing severe environmental and economic impacts. However, food waste (FW) can be converted into sustainable animal feed, reducing waste disposal and providing an alternative protein source for animals. The utilization of FW as animal feed presents a solution that not only tackles challenges pertaining to FW management and food security but also lessens the demand for the development of traditional feed, which is an endeavour that is both resource and environmentally intensive in nature. Moreover, this approach can also contribute to the circular economy by creating a closed-loop system that reduces the use of natural resources and minimizes environmental pollution. Therefore, this review discusses the characteristics and types of FW, as well as advanced treatment methods that can be used to recycle FW into high-quality animal feed and its limitations, as well as the benefits and drawbacks of using FW as animal feed. Finally, the review concludes that utilization of FW as animal feed can provide a sustainable solution for FW management, food security, preserving resources, reducing environmental impacts, and contributing to the circular bioeconomy.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Amiya Ojha
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India;
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India
| | | |
Collapse
|