1
|
Yang T, Zhang X, Zhang H, Jiang X, Yuan X, Chen W, Li J, Zeng C. Argonaute 1 negatively regulates cadmium tolerance via modulating jasmonic acid and gibberellin contents, antioxidant enzymes, and chlorophyll level in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136618. [PMID: 39603128 DOI: 10.1016/j.jhazmat.2024.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants that limits plant productivity and poses a threat to human health. In this study, we identified argonaute 1 (AGO1), a key factor in the RNA interference pathway, which is suppressed by Cd stress in Nicotiana tabacum L. Overexpression of NtAGO1 (AGO1-OE), knockout of NtAGO1 (ago1-KO), and wild-type (WT) plants were employed to investigate the mechanism of NtAGO1-mediated Cd tolerance in tobacco. The results showed that AGO1-OE plants exhibited higher levels of reactive oxygen species (ROS) and lower chlorophyll content, and their seedlings accumulated lower Cd levels than WT plants. Cd stress affected the content of endogenous plant hormones differently, with jasmonic acid (JA) increasing by 57.42 % and gibberellins (GA) decreasing by 24.51 %, both of which were negatively regulated by NtAGO1. Application of exogenous GA3 and methyl jasmonate confirmed that plant hormones up-regulate antioxidant enzyme activity. Furthermore, the foliar application of GA3 inhibited the expression of chlorophyll degradation-related genes, impeded Cd-induced chlorophyll degradation and promoted plant growth. Our results demonstrate that NtAGO1 negatively regulates the response of tobacco to Cd stress by decreasing JA and GA levels, providing a foundation for the use of genetic engineering methods to enhance the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Ting Yang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China.
| | - Xinyu Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Hui Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Xingpeng Jiang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Xu Yuan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Weida Chen
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Jianan Li
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
2
|
Ma Y, Huang Y, Zhang W, Dong J, Zhang X, Zhu Y, Wang Y, Liu L, Xu L. RsNRAMP5, a major metal transporter, promotes cadmium influx and ROS accumulation in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109323. [PMID: 39603032 DOI: 10.1016/j.plaphy.2024.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Arable soil contamination with heavy metals (HMs) poses a great potential threat to vegetable crops and human health. Radish (Raphanus sativus L.), an economical and popular root vegetable crop, is easily absorbed HMs by its taproot. Although the Natural Resistance-Associated Macrophage Proteins (NRAMPs) were participated in transporting a number of HMs in plants, whether and how the NRAMP genes involved in cadmium (Cd) uptake and transport remains elusive in radish. In this study, a total of nine RsNRAMP gene members were identified, which were classified into three subgroups and dispersed on six radish chromosomes. Three RsNRAMPs (RsNRAMP3, RsNRAMP4 and RsNRAMP5) displayed high expression in the vascular cambium, and they exhibited obviously Cd-induced expression, among which the expression of RsNRAMP4 and RsNRAMP5 reached to the highest level at 24h. Moreover, the RsNRAMP5 was localized to the plasma membrane and its promoter activity was dramatically induced by Cd exposure. Heterologous expression analysis indicated that over-expression of RsNRAMP5 significantly promoted the uptake of Cd, lead (Pb), iron (Fe) and manganese (Mn) in yeast cells. In addition, the transient over-expression of RsNRAMP5 promoted Cd uptake and enhanced ROS (reactive oxygen species) accumulation in radish cotyledons. These findings would expedite unraveling the molecular mechanism underlying RsNRAMP5-mediated Cd uptake and transport in radish.
Collapse
Affiliation(s)
- Yingfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yudi Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weilan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaheng Dong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Tang W, Liang L, Yang H, Yu X, Ye X, Xie Y, Li R, Lin L, Huang Z, Sun B, Sun G, Liu L, Li H, Tang Y. Exogenous salicylic acid reduces cadmium content in spinach (Spinacia oleracea L.) shoots under cadmium stress. BMC PLANT BIOLOGY 2024; 24:1226. [PMID: 39709358 DOI: 10.1186/s12870-024-05948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Consumption of leafy vegetables is a primary route of cadmium (Cd) exposure in the human body. Salicylic acid (SA) is a major stress signaling molecule that alleviates Cd toxicity in various plants. Our study aimed to investigate the effects of different SA concentrations on spinach growth, cadmium accumulation, and stress resistance physiology under cadmium stress (50 µmol/L). RESULTS Cd stress significantly markedly decreased spinach growth and biomass, reduced its photosynthetic efficiency, increased activities of antioxidative enzymes, and upregulated the relative expression of several genes involved in cadmium absorption and transport compared to the control. The exogenous application of SA mitigated the harmful effects of Cd in spinach. 0.8 and 1.6 mmol/L SA significantly increased spinach root length, plant height, and biomass and decreased the Cd content in shoots by 30.03 and 17.35% compared to the Cd-treated group. Moreover, SA alleviated the yellowing of leaves caused by Cd stress. Exogenous SA ameliorated Cd toxicity in spinach by reducing reactive oxygen species, malondialdehyde, proline, and soluble protein levels. Exogenous SA application reduced Cd absorption in spinach leaves by downregulating the expression of genes involved in Cd transport, such as SoHMA4-like, SoNramp3.1-like, SoNramp6-like, and SoNramp7.2-like. Principal component analysis and correlation analysis showed that exogenous SA application under Cd stress was correlated with plant Cd content, photosynthetic pigment content, and relative expression of Cd absorption and transportation-related genes. CONCLUSIONS To summarize, these findings indicate that SA mitigates Cd toxicity in spinach by reversing the adverse effects of Cd stress on plant growth and reducing Cd accumulation in the shoots.
Collapse
Affiliation(s)
- Wen Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haixing Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuena Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xudong Ye
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongdong Xie
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Rulong Li
- Meishan Dongpo District Science and Technology Innovation Development Center, Meishan, Sichuan, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Liu
- Sichuan Agricultural University Library, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Meng Y, Li M, Guo Z, Chen J, Wu J, Xia Z. The transcription factor ZmbHLH105 confers cadmium tolerance by promoting abscisic acid biosynthesis in maize. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135826. [PMID: 39270588 DOI: 10.1016/j.jhazmat.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Cadmium (Cd), a highly toxic heavy metal, profoundly impacts crop productivity. The bHLH-type transcription factors regulate plant stress responses, yet their involvement in maize's Cd stress response remains unclear. Here, we studied ZmbHLH105, a maize bHLH gene induced by Cd exposure. Overexpression of ZmbHLH105 in maize seedlings, which were treated with 1.0 mM CdCl2 for 7 days, increased endogenous ABA levels, decreased Cd accumulation, and enhanced Cd stress tolerance. ZmbHLH105 directly bound to promoter regions of two key ABA biosynthesis genes ZmNCED1/2, activating their transcription, thus boosting ABA levels and Cd tolerance. ZmbHLH105-overexpression promoted lignin synthesis, while ZmbHLH105-RNAi attenuated this effect. Exogenous ABA supplementation increased lignin content in Cd-stressed maize roots, suggesting ZmbHLH105-mediated Cd tolerance involves ABA-induced lignin deposition and cell wall thickening. Moreover, Cd transport-related gene expression was suppressed in ZmbHLH105 overexpression lines. Our findings demonstrate that ZmbHLH105 decreases Cd accumulation, improving Cd tolerance by enhancing ABA biosynthesis, increasing lignin deposition, thickening cell walls, and inhibiting Cd absorption in maize roots. This study unveils ZmbHLH105's mechanisms in Cd tolerance, highlighting its potential in breeding low Cd-accumulating crops for food and environment safety.
Collapse
Affiliation(s)
- Yazhou Meng
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Mengyao Li
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ziting Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jiafa Chen
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China
| | - Jianyu Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China.
| |
Collapse
|
5
|
Wang P, Cao J, Lu J, Xu X, Wu S, Liu H, Wang X. Exogenous MgH 2-derived hydrogen alleviates cadmium toxicity through m 6A RNA methylation in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136073. [PMID: 39395396 DOI: 10.1016/j.jhazmat.2024.136073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Cadmium (Cd) contamination poses a substantial threat to crop yields and human health. While magnesium hydride (MgH2) has been reported as a hydrogen (H2) donor that promotes plant growth under heavy metal contamination, its role in rice remains elusive. Herein, seedlings of Oryza sativa L. Japonica variety Zhonghua 11 (ZH11) were selected and exposed to 20 µL of 1-mol/L cadmium chloride (CdCl2) solution via hydroponics to simulate Cd stress. Meanwhile, 0.1 mg of MgH2 was used to slow-release H2 to the experimental group to explore its potential effects on rice over a 2-week period. The results indicated that Cd exposure severely inhibited the growth and development of ZH11 rice seedlings. However, the exogenous slow-release of H2 from MgH2 effectively mitigated this inhibitory effect by restoring the balance of reactive oxygen species (ROS), maintaining endogenous H2 homeostasis, and supporting the photosynthetic system. High-performance liquid chromatography analysis revealed that exogenous H2 reduces m6A RNA methylation levels in mRNA under Cd stress. Consequently, MeRIP-seq was conducted to investigate the effect of Cd exposure in rice in the presence and absence of H2. The m6A modifications were enriched at the start codon, stop codon, and 3' UTR. By integrating RNA-seq data, 118 transcripts were identified as differentially methylated and expressed genes under Cd stress. These gene annotations were associated with ROS, biological stress, and hormonal responses. Notably, 297 differentially methylated and expressed genes were identified under Cd stress in the presence of H2, linked to heavy metals, protein kinases, and calcium signaling regulation. Cd strongly activates the MAPK pathway in response to stress. Exogenous H2 reduces Cd accumulation as well as enhances plant tolerance and homeostasis by lowering m6A levels, thereby decreasing the mRNA stability of these genes. Our findings indicate that MgH2, by supplying H2, regulates gene expression through m6A RNA methylation and confers Cd tolerance in rice. This study provides potential candidate genes for studying the remediation of heavy metal pollution in plants.
Collapse
Affiliation(s)
- Peiran Wang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China
| | - Junfeng Cao
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Jiayu Lu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China
| | - Xue Xu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China
| | - Shuang Wu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China
| | - Hongru Liu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Fengxian District, Shanghai 201403, PR China
| | - Xiufeng Wang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China.
| |
Collapse
|
6
|
Wu X, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121979. [PMID: 39088904 DOI: 10.1016/j.jenvman.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 μM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.
Collapse
Affiliation(s)
- Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
7
|
Li H, Jiang X, Mashiguchi K, Yamaguchi S, Lu S. Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen). Chin Med 2024; 19:102. [PMID: 39049014 PMCID: PMC11267865 DOI: 10.1186/s13020-024-00971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Shandong Bairuijia Food Co., Ltd, No. 8008, Yi Road, Laizhou, Yantai, 261400, Shandong, People's Republic of China
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Yang Y, Zhao Y, Pan M, Yu Y, Guo Y, Ge Q, Hao W. Physiology and transcriptome analysis of Artemisia argyi adaptation and accumulation to soil cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116397. [PMID: 38714088 DOI: 10.1016/j.ecoenv.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
The soil pollution caused by cadmium (Cd) poses a significant threat to the environment. Therefore, identifying plants that can effectively remediate Cd-contaminated soils is urgently needed. In this study, physiological, cytological, and transcriptome analyses were performed to comprehensively understand the changes in Artemisia argyi under Cd stress. Physiological and cytological analyses indicated that A. argyi maintained normal growth with intact cell structure under Cd stress levels up to 10 mg/kg. Cytological analysis showed that Cd precipitation in leaf cells occurred in the cytoplasm and intercellular spaces. As the levels of Cd stress increased, proline accumulation in leaves increased, whereas soluble protein and soluble sugar initially increased, followed by a subsequent decline. The translocation factor was above 1 under 0.6 mg/kg Cd stress but decreased when it exceeded this concentration. Transcriptome analyses revealed several crucial Cd-influenced pathways, including amino acid, terpenoid, flavonoid, and sugar metabolisms. This study not only proved that A. argyi could enrich Cd in soil but also revealed the response of A. argyi to Cd and its resistance mechanisms, which provided insight into the cleaner production of A. argyi and the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yingbin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinghui Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiqi Pan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaxin Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Guo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Ge
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wenfang Hao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Zdunek-Zastocka E, Michniewska B, Pawlicka A, Grabowska A. Cadmium Alters the Metabolism and Perception of Abscisic Acid in Pisum sativum Leaves in a Developmentally Specific Manner. Int J Mol Sci 2024; 25:6582. [PMID: 38928288 PMCID: PMC11203977 DOI: 10.3390/ijms25126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, β-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland (A.P.)
| | | | | | | |
Collapse
|
10
|
Zhao Y, Xie Q, Yang Q, Cui J, Tan W, Zhang D, Xiang J, Deng L, Guo Y, Li M, Liu L, Yan M. Genome-wide identification and evolutionary analysis of the NRAMP gene family in the AC genomes of Brassica species. BMC PLANT BIOLOGY 2024; 24:311. [PMID: 38649805 PMCID: PMC11036763 DOI: 10.1186/s12870-024-04981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Brassica napus, a hybrid resulting from the crossing of Brassica rapa and Brassica oleracea, is one of the most important oil crops. Despite its significance, B. napus productivity faces substantial challenges due to heavy metal stress, especially in response to cadmium (Cd), which poses a significant threat among heavy metals. Natural resistance-associated macrophage proteins (NRAMPs) play pivotal roles in Cd uptake and transport within plants. However, our understanding of the role of BnNRAMPs in B. napus is limited. Thus, this study aimed to conduct genome-wide identification and bioinformatics analysis of three Brassica species: B. napus, B. rapa, and B. oleracea. RESULTS A total of 37 NRAMPs were identified across the three Brassica species and classified into two distinct subfamilies based on evolutionary relationships. Conservative motif analysis revealed that motif 6 and motif 8 might significantly contribute to the differentiation between subfamily I and subfamily II within Brassica species. Evolutionary analyses and chromosome mapping revealed a reduction in the NRAMP gene family during B. napus evolutionary history, resulting in the loss of an orthologous gene derived from BoNRAMP3.2. Cis-acting element analysis suggested potential regulation of the NRAMP gene family by specific plant hormones, such as abscisic acid (ABA) and methyl jasmonate (MeJA). However, gene expression pattern analyses under hormonal or stress treatments indicated limited responsiveness of the NRAMP gene family to these treatments, warranting further experimental validation. Under Cd stress in B. napus, expression pattern analysis of the NRAMP gene family revealed a decrease in the expression levels of most BnNRAMP genes with increasing Cd concentrations. Notably, BnNRAMP5.1/5.2 exhibited a unique response pattern, being stimulated at low Cd concentrations and inhibited at high Cd concentrations, suggesting potential response mechanisms distinct from those of other NRAMP genes. CONCLUSIONS In summary, this study indicates complex molecular dynamics within the NRAMP gene family under Cd stress, suggesting potential applications in enhancing plant resilience, particularly against Cd. The findings also offer valuable insights for further understanding the functionality and regulatory mechanisms of the NRAMP gene family.
Collapse
Affiliation(s)
- Yuquan Zhao
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Qijun Xie
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Qian Yang
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jiamin Cui
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Wenqing Tan
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Jianhua Xiang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Lichao Deng
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yiming Guo
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Mei Li
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Lili Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China.
| | - Mingli Yan
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China.
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
11
|
Walczak-Skierska J, Krakowska-Sieprawska A, Monedeiro F, Złoch M, Pomastowski P, Cichorek M, Olszewski J, Głowacka K, Gużewska G, Szultka-Młyńska M. Silicon's Influence on Polyphenol and Flavonoid Profiles in Pea ( Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS OMEGA 2024; 9:14899-14910. [PMID: 38585133 PMCID: PMC10993280 DOI: 10.1021/acsomega.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Aneta Krakowska-Sieprawska
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Mateusz Cichorek
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Jacek Olszewski
- Experimental
Education Unit, University of Warmia and
Mazury in Olsztyn, Plac Łódzki 1, Olsztyn 10-721, Poland
| | - Katarzyna Głowacka
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Gaja Gużewska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| | - Małgorzata Szultka-Młyńska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| |
Collapse
|
12
|
Soni S, Jha AB, Dubey RS, Sharma P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168826. [PMID: 38042185 DOI: 10.1016/j.scitotenv.2023.168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that adversely affects humans, animals, and plants, even at low concentrations. It is widely distributed and has both natural and anthropogenic sources. Plants readily absorb and distribute Cd in different parts. It may subsequently enter the food chain posing a risk to human health as it is known to be carcinogenic. Cd has a long half-life, resulting in its persistence in plants and animals. Cd toxicity disrupts crucial physiological and biochemical processes in plants, including reactive oxygen species (ROS) homeostasis, enzyme activities, photosynthesis, and nutrient uptake, leading to stunted growth and reduced biomass. Although plants have developed defense mechanisms to mitigate these damages, they are often inadequate to combat high Cd concentrations, resulting in yield losses. Nanoparticles (NPs), typically smaller than 100 nm, possess unique properties such as a large surface area and small size, making them highly reactive compared to their larger counterparts. NPs from diverse sources have shown potential for various agricultural applications, including their use as fertilizers, pesticides, and stress alleviators. Recently, NPs have emerged as a promising strategy to mitigate heavy metal stress, including Cd toxicity. They offer advantages, such as efficient absorption by crop plants, the reduction of Cd uptake, and the enhancement of mineral nutrition, antioxidant defenses, photosynthetic parameters, anatomical structure, and agronomic traits in Cd-stressed plants. The complex interaction of NPs with calcium ions (Ca2+), intracellular ROS, nitric oxide (NO), and phytohormones likely plays a significant role in alleviating Cd stress. This review aims to explore the positive impacts of diverse NPs in reducing Cd accumulation and toxicity while investigating their underlying mechanisms of action. Additionally, it discusses research gaps, recent advancements, and future prospects of utilizing NPs to alleviate Cd-induced stress, ultimately promoting improved plant growth and yield.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
13
|
Ahmed N, Zhang B, Chachar Z, Li J, Xiao G, Wang Q, Hayat F, Deng L, Narejo MUN, Bozdar B, Tu P. Micronutrients and their effects on Horticultural crop quality, productivity and sustainability. SCIENTIA HORTICULTURAE 2024; 323:112512. [DOI: 10.1016/j.scienta.2023.112512] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Feng D, Wang R, Sun X, Liu L, Liu P, Tang J, Zhang C, Liu H. Heavy metal stress in plants: Ways to alleviate with exogenous substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165397. [PMID: 37429478 DOI: 10.1016/j.scitotenv.2023.165397] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Rongxue Wang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Xiaoan Sun
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Li'nan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Liu
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chenxi Zhang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China.
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Affairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453003, Henan, China.
| |
Collapse
|