1
|
Zadokar A, Sharma P, Sharma R. Comprehensive insights on association mapping in perennial fruit crops breeding - Its implications, current status and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112281. [PMID: 39426735 DOI: 10.1016/j.plantsci.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In order to provide food and nutritional security for the world's rapidly expanding population, fruit crop researchers have identified two critical priorities: increasing production and preserving fruit quality during the pre- and post-harvest periods. The genetic basis of these complex, commercially important fruit traits which are uniquely regulated by polygenes or multi-allelic genes that interact with one another and the environment can be analyzed with the aid of trait mapping tools. The most interesting trait mapping approach that offers the genetic level investigation for marker-trait associations (MTAs) for these complex fruit traits, without the development of mapping population, is association mapping. This approach was used during the genetic improvement program, emphasizing the obstacles (breeding strategies adopted, generation interval, and their genomic status) pertaining to perennial fruit crops. This method of studying population diversity and linkage disequilibrium in perennial fruit crops has been made possible by recent developments in genotyping, phenotyping, and statistical analysis. Thus, the purpose of this review is to provide an overview of different trait mapping techniques, with a focus on association mapping (method, essential components, viability, constraints, and future perspective) and its advantages, disadvantages, and possibilities for breeding perennial fruit crops.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| |
Collapse
|
2
|
Zhan J, Wang D, Wu W, Deng D, Duan C, Sun S, Zhu Z. Three Novel er1 Alleles and Their Functional Markers for Breeding Resistance to Powdery Mildew ( Erysiphe pisi) in Pea. PLANT DISEASE 2024; 108:3044-3051. [PMID: 38803073 DOI: 10.1094/pdis-04-24-0859-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Powdery mildew caused by Erysiphe pisi DC is a global notorious disease on peas. Deploying resistance pea cultivars is the most efficient and environmentally friendly method for disease control. This study focuses on revealing the resistance genes in three pea germplasms and developing their functional markers for resistance breeding. The identification of resistance genes involved genetic mapping and the sequencing of the pea mildew resistance locus O homolog PsMLO1 gene. To confirm the heredity of three resistant germplasms, they were crossed with susceptible cultivars to generate F1, F2, and F2:3 populations. The F1 generation exhibited susceptibility to E. pisi, whereas the segregation patterns in subsequent generations adhered to the 3:1 (susceptible: resistant) and 1:2:1 (susceptible homozygotes: heterozygotes: resistant homozygotes) ratios, indicating that powdery mildew resistance was governed by a single recessive gene in each germplasm. Analysis of er1-linked markers and genetic mapping suggested that the resistance genes could be er1 alleles in these germplasms. The multiple clone sequencing results of the three homologous PsMLO1 genes showed they were novel er1 alleles, named er1-15, er1-16, and er1-17. The er1-15 and er1-16 were caused by 1-bp deletion at position 335 (A) and 429 (T) in exon 3, respectively, whereas er1-17 was caused by a 1-bp insertion at position 248 in exon 3, causing a frame-shift mutation and premature termination of PsMLO1 protein translation. Their respective functional markers, kompetitive allele-specific PCR (KASP)-er1-15, KASP-er1-16, and KASP-er1-17, were successfully developed and validated in respective mapping populations and pea germplasms. These results provide valuable tools for pea breeding resistance to E. pisi.
Collapse
Affiliation(s)
- Junliang Zhan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Danhua Wang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Wenqi Wu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Dong Deng
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Canxing Duan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Suli Sun
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Zhendong Zhu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| |
Collapse
|
3
|
Catalano C, Di Guardo M, Licciardello G, Seminara S, Tropea Garzia G, Biondi A, Troggio M, Bianco L, La Malfa S, Gentile A, Distefano G. QTL analysis on a lemon population provides novel insights on the genetic regulation of the tolerance to the two-spotted spider mite attack. BMC PLANT BIOLOGY 2024; 24:509. [PMID: 38844865 PMCID: PMC11157791 DOI: 10.1186/s12870-024-05211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Among the Citrus species, lemon (Citrus limon Burm f.) is one of the most affected by the two-spotted spider mite (Tetranychus urticae Koch). Moreover, chemical control is hampered by the mite's ability to develop genetic resistance against acaricides. In this context, the identification of the genetic basis of the host resistance could represent a sustainable strategy for spider mite control. In the present study, a marker-trait association analysis was performed on a lemon population employing an association mapping approach. An inter-specific full-sib population composed of 109 accessions was phenotyped through a detached-leaf assays performed in modified Huffaker cells. Those individuals, complemented with two inter-specific segregating populations, were genotyped using a target-sequencing approach called SPET (Single Primer Enrichment Technology), the resulting SNPs were employed for the generation of an integrated genetic map. RESULTS The percentage of damaged area in the full-sib population showed a quantitative distribution with values ranging from 0.36 to 9.67%. A total of 47,298 SNPs were selected for an association mapping study and a significant marker linked with resistance to spider mite was detected on linkage group 5. In silico gene annotation of the QTL interval enabled the detection of 13 genes involved in immune response to biotic and abiotic stress. Gene expression analysis showed an over expression of the gene encoding for the ethylene-responsive transcription factor ERF098-like, already characterized in Arabidopsis and in rice for its involvement in defense response. CONCLUSION The identification of a molecular marker linked to the resistance to spider mite attack can pave the way for the development of marker-assisted breeding plan for the development of novel selection coupling favorable agronomical traits (e.g. fruit quality, yield) with a higher resistance toward the mite.
Collapse
Affiliation(s)
- Chiara Catalano
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy
| | - Giuliana Licciardello
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy
| | - Sebastiano Seminara
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy
| | - Giovanna Tropea Garzia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy.
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy
| | - Michela Troggio
- Research and Innovation Centre, San Michele All' Adige, Fondazione Edmund Mach, Trento, Italy
| | - Luca Bianco
- Research and Innovation Centre, San Michele All' Adige, Fondazione Edmund Mach, Trento, Italy
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy.
| | - Gaetano Distefano
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy
| |
Collapse
|
4
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
5
|
Ferrer V, Costantino G, Paymal N, Quinton C, Perdomo EC, Paoli M, Mournet P, Ollitrault P, Tomi F, Luro F. Inheritance and Quantitative Trait Loci Mapping of Aromatic Compounds from Clementine ( Citrus × clementina Hort. ex Tan.) and Sweet Orange ( C. × sinensis (L.) Osb.) Fruit Essential Oils. Genes (Basel) 2023; 14:1800. [PMID: 37761942 PMCID: PMC10531275 DOI: 10.3390/genes14091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Despite their importance in food processing, perfumery and cosmetics, the inheritance of sweet orange aromatic compounds, as well as their yield in the fruit peel, has been little analyzed. In the present study, the segregation of aromatic compounds was studied in an F1 population of 77 hybrids resulting from crosses between clementine and blood sweet orange. Fruit-peel essential oils (PEOs) extracted by hydrodistillation were analyzed by gas chromatography coupled with flame ionization detection. Genotyping by sequencing was performed on the parents and the hybrids. The resulting "clementine × sweet blood orange" genetic map consists of 710 SNP markers distributed in nine linkage groups (LGs), representing the nine citrus chromosomes, and spanning 1054 centimorgans. Twenty quantitative trait loci (QTLs) were identified, explaining between 20.5 and 55.0% of the variance of the major aromatic compounds and PEO yield. The QTLs for monoterpenes and aliphatic aldehydes predominantly colocalized on LGs 5 and 8, as did the two QTLs for PEO yield. The sesquiterpene QTLs were located on LGs 1, 3, 6 and 8. The detection of major QTLs associated with the synthesis of aliphatic aldehydes, known for their strong aromatic properties, open the way for marker-assisted selection.
Collapse
Affiliation(s)
- Vincent Ferrer
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; (V.F.); (G.C.); (E.C.P.)
- Rémy Cointreau—Les Molières, 49124 Saint-Barthélemy-d’Anjou, France; (N.P.); (C.Q.)
| | - Gilles Costantino
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; (V.F.); (G.C.); (E.C.P.)
| | - Noémie Paymal
- Rémy Cointreau—Les Molières, 49124 Saint-Barthélemy-d’Anjou, France; (N.P.); (C.Q.)
| | - Carole Quinton
- Rémy Cointreau—Les Molières, 49124 Saint-Barthélemy-d’Anjou, France; (N.P.); (C.Q.)
| | - Estefania Carrillo Perdomo
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; (V.F.); (G.C.); (E.C.P.)
| | - Mathieu Paoli
- UMR SPE 6134—Université de Corse—CNRS, 20000 Ajaccio, France; (M.P.); (F.T.)
| | - Pierre Mournet
- CIRAD, UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France;
| | - Patrick Ollitrault
- CIRAD, UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France;
| | - Félix Tomi
- UMR SPE 6134—Université de Corse—CNRS, 20000 Ajaccio, France; (M.P.); (F.T.)
| | - François Luro
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; (V.F.); (G.C.); (E.C.P.)
| |
Collapse
|