1
|
Zhang Z, Zou W, Lin P, Wang Z, Chen Y, Yang X, Zhao W, Zhang Y, Wang D, Que Y, Wu Q. Evolution and Function of MADS-Box Transcription Factors in Plants. Int J Mol Sci 2024; 25:13278. [PMID: 39769043 PMCID: PMC11676252 DOI: 10.3390/ijms252413278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The MADS-box transcription factor (TF) gene family is pivotal in various aspects of plant biology, particularly in growth, development, and environmental adaptation. It comprises Type I and Type II categories, with the MIKC-type subgroups playing a crucial role in regulating genes essential for both the vegetative and reproductive stages of plant life. Notably, MADS-box proteins can influence processes such as flowering, fruit ripening, and stress tolerance. Here, we provide a comprehensive overview of the structural features, evolutionary lineage, multifaceted functions, and the role of MADS-box TFs in responding to biotic and abiotic stresses. We particularly emphasize their implications for crop enhancement, especially in light of recent advances in understanding the impact on sugarcane (Saccharum spp.), a vital tropical crop. By consolidating cutting-edge findings, we highlight potential avenues for expanding our knowledge base and enhancing the genetic traits of sugarcane through functional genomics and advanced breeding techniques. This review underscores the significance of MADS-box TFs in achieving improved yields and stress resilience in agricultural contexts, positioning them as promising targets for future research in crop science.
Collapse
Affiliation(s)
- Zihao Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Wenhui Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peixia Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Zixun Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Ye Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Wanying Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Yuanyuan Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Dongjiao Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
2
|
Okay A, Kırlıoğlu T, Durdu YŞ, Akdeniz SŞ, Büyük İ, Aras ES. Omics approaches to understand the MADS-box gene family in common bean (Phaseolus vulgaris L.) against drought stress. PROTOPLASMA 2024; 261:709-724. [PMID: 38240857 PMCID: PMC11196313 DOI: 10.1007/s00709-024-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 06/25/2024]
Abstract
MADS-box genes are known to play important roles in diverse aspects of growth/devolopment and stress response in several plant species. However, no study has yet examined about MADS-box genes in P. vulgaris. In this study, a total of 79 PvMADS genes were identified and classified as type I and type II according to the phylogenetic analysis. While both type I and type II PvMADS classes were found to contain the MADS domain, the K domain was found to be present only in type II PvMADS proteins, in agreement with the literature. All chromosomes of the common bean were discovered to contain PvMADS genes and 17 paralogous gene pairs were identified. Only two of them were tandemly duplicated gene pairs (PvMADS-19/PvMADS-23 and PvMADS-20/PvMADS-24), and the remaining 15 paralogous gene pairs were segmentally duplicated genes. These duplications were found to play an important role in the expansion of type II PvMADS genes. Moreover, the RNAseq and RT-qPCR analyses showed the importance of PvMADS genes in response to drought stress in P. vulgaris.
Collapse
Affiliation(s)
- Aybüke Okay
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Tarık Kırlıoğlu
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Yasin Şamil Durdu
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Sanem Şafak Akdeniz
- Kalecik Vocational School Plant Protection Program, Ankara University, Ankara, 06100, Turkey
| | - İlker Büyük
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
- Department of Biology, Faculty of Science, Ankara University, Block A, Emniyet, Dögol Cd. 6A, Yenimahalle, Ankara, 06560, Turkey.
| | - E Sümer Aras
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
- Department of Biology, Faculty of Science, Ankara University, Block A, Emniyet, Dögol Cd. 6A, Yenimahalle, Ankara, 06560, Turkey.
| |
Collapse
|
3
|
Yu Y, Chu X, Ma X, Hu Z, Wang M, Li J, Yin H. Genome-Wide Analysis of MADS-Box Gene Family Reveals CjSTK as a Key Regulator of Seed Abortion in Camellia japonica. Int J Mol Sci 2024; 25:5770. [PMID: 38891958 PMCID: PMC11171818 DOI: 10.3390/ijms25115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The plant MADS-box transcription factor family is a major regulator of plant flower development and reproduction, and the AGAMOUS-LIKE11/SEEDSTICK (AGL11/STK) subfamily plays conserved functions in the seed development of flowering plants. Camellia japonica is a world-famous ornamental flower, and its seed kernels are rich in highly valuable fatty acids. Seed abortion has been found to be common in C. japonica, but little is known about how it is regulated during seed development. In this study, we performed a genome-wide analysis of the MADS-box gene the in C. japonica genome and identified 126 MADS-box genes. Through gene expression profiling in various tissue types, we revealed the C/D-class MADS-box genes were preferentially expressed in seed-related tissues. We identified the AGL11/STK-like gene, CjSTK, and showed that it contained a typical STK motif and exclusively expressed during seed development. We found a significant increase in the CjSTK expression level in aborted seeds compared with normally developing seeds. Furthermore, overexpression of CjSTK in Arabidopsis thaliana caused shorter pods and smaller seeds. Taken together, we concluded that the fine regulation of the CjSTK expression at different stages of seed development is critical for ovule formation and seed abortion in C. japonica. The present study provides evidence revealing the regulation of seed development in Camellia.
Collapse
Affiliation(s)
- Yifan Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xian Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| | - Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| |
Collapse
|
4
|
Yu JJ, Cui J, Huang H, Cen DC, Liu F, Xu ZF, Wang Y. Identification of flowering genes in Camellia perpetua by comparative transcriptome analysis. Funct Integr Genomics 2023; 24:2. [PMID: 38066213 DOI: 10.1007/s10142-023-01267-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Camellia perpetua has the excellent characteristic of flowering multiple times throughout the year, which is of great importance to solve the problem of "short flowering period" and "low fresh flower yield" in the yellow Camellia industry at present. Observations of flowering phenology have demonstrated that most floral buds of C. perpetua were formed by the differentiation of axillary buds in the scales at the base of the terminal buds of annual branches. However, the molecular mechanism of flowering in C. perpetua is still unclear. In this study, we conducted a comparative transcriptomic study of the terminal buds and their basal flower buds in March (spring) and September (autumn) using RNA-seq and found that a total of 11,067 genes were significantly differentially expressed in these two periods. We identified 27 genes related to gibberellin acid (GA) synthesis, catabolism, and signal transduction during floral bud differentiation. However, treatment of the terminal buds and axillary buds of C. perpetua on annual branch with GA3 did not induce floral buds at the reproductive growth season (in August) but promoted shoot sprouting. Moreover, 203 flowering genes were identified from the C. perpetua transcriptome library through homology alignment, including flowering integrators LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO), as well as MADS-box, SQUAMOSA PROMOTER BINDING PROTEIN-box (SBP-box), and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) genes, which were specifically upregulated in floral buds and were likely involved in flowering in C. perpetua. The floral inhibitor CperTFL1b was identified and cloned from C. perpetua, and its expression level was specifically regulated in terminal buds in autumn. Ectopic overexpression of CperTFL1b delayed flowering time and produced abnormal inflorescence and floral organs in Arabidopsis, suggesting that CperTFL1b inhibits flowering. In conclusion, this study deepens our understanding of the molecular mechanism of blooms throughout the year in C. perpetua and provides a helpful reference for cultivating new varieties of yellow Camellia with improved flowering traits.
Collapse
Affiliation(s)
- Jing-Jing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Jia Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Han Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Dong-Can Cen
- Guangxi Yuanzhiyuan Ecological Agriculture Investment Co., Ltd., Nanning, 530212, China
| | - Fang Liu
- Nanning Tree Garden, Nanning, 530031, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China.
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China.
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China.
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China.
| |
Collapse
|