1
|
Salazar MJ, Cáceres-Mago K, Becerra AG. Role of arbuscular mycorrhizal fungi in lead translocation from Bidens pilosa L. plants to soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121626. [PMID: 38944957 DOI: 10.1016/j.jenvman.2024.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Bidens pilosa frequently forms a symbiotic association with arbuscular mycorrhizal fungi (AMF). This plant species can grow in Pb-polluted soils, accumulating Pb in its tissues. The aims of the study were to determine whether Pb accumulated in the tissues of B. pilosa can be transferred to the soil through AMF and to compare the role of AMF communities that have a history of exposure to the contaminant with those that have never been exposed. The experiment combined plants with and without Pb accumulated in their tissues, and inoculated with AMF collected from the rhizosphere of B. pilosa in soils contaminated and not contaminated with Pb. The results showed that AMF participate in the removal of Pb that had entered the plant and release it into the soil, as evidenced by the presence of Pb in the AMF spores and in the glomalin produced by AMF. We propose that Pb accumulation in AMF spores would be a protection mechanism that interrupts Pb uptake by the plant; however, that mechanism would not be fully exploited in detoxification, whereas the production of Pb-enriched glomalin could be an important detoxification mechanism to eliminate Pb already taken up by plants. AMF with a history of Pb exposure achieved only higher rates of root colonization, while AMF without previous exposure showed higher Pb concentration in the spores and higher glomalin production, and successfully removed Pb from both the roots and aboveground parts of the plant. The use of AMF communities not adapted to Pb may be a more effective option for microbe-mediated phytoremediation methods in which detoxification mechanisms are desirable.
Collapse
Affiliation(s)
- M Julieta Salazar
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| | - Karla Cáceres-Mago
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| | - Alejandra G Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| |
Collapse
|
2
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
3
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
4
|
Munir R, Yasin MU, Afzal M, Jan M, Muhammad S, Jan N, Nana C, Munir F, Iqbal H, Tawab F, Gan Y. Melatonin alleviated cadmium accumulation and toxicity by modulating phytohormonal balance and antioxidant metabolism in rice. CHEMOSPHERE 2024; 346:140590. [PMID: 37914045 DOI: 10.1016/j.chemosphere.2023.140590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Cadmium (Cd) contamination is an eminent dilemma that jeopardizes global food safety and security, especially through its phytotoxicity in rice; one of the most edible crops. Melatonin (MET) has emerged as a protective phytohormone in stress conditions, but the defensive role and underlying mechanisms of MET against Cd toxicity in rice still remain unclear. To fulfill this knowledge gap, the present study is to uncover the key mechanisms for MET-mediated Cd-stress tolerance in rice. Cd toxicity significantly reduced growth by hindering the process of photosynthesis, cellular redox homeostasis, phytohormonal imbalance, and ultrastructural damages. Contrarily, MET supplementation considerably improved growth attributes, photosynthetic efficiency, and cellular ultrastructure as measured by gas exchange elements, chlorophyll content, reduced Cd accumulation, and ultrastructural analysis via transmission electron microscopy (TEM). MET treatment significantly reduced Cd accumulation (39.25%/31.58%), MDA (25.87%/19.45%), H2O2 (17.93%/9.56%), and O2 (29.11%/27.14%) levels in shoot/root tissues, respectively, when compared with Cd treatment. More importantly, MET manifested association with stress responsive phytohormones (ABA and IAA) and boosted the defense mechanisms of plant by enhancing the activities of ROS-scavenging antioxidant enzymes (SOD; superoxide dismutase, POD; peroxidase, CAT; catalase, APX; ascorbate peroxidase) and as well as regulating the key stress-responsive genes (OsSOD1, OsPOD1, OsCAT2, OsAPX1), thereby reinstate cellular membrane integrity and confer tolerance to ultrastructural damages under Cd-induced phytotoxicity. Overall, our findings emphasized the potential of MET as a long-term and cost-effective approach to Cd remediation in paddy soils, which can pave the way for a healthier and more environmentally conscious agricultural sector.
Collapse
Affiliation(s)
- Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Afzal
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nazia Jan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Hamza Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Pakistan
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Zhang L, Zuluaga MYA, Pii Y, Barone A, Amaducci S, Miras-Moreno B, Martinelli E, Bellotti G, Trevisan M, Puglisi E, Lucini L. A Pseudomonas Plant Growth Promoting Rhizobacterium and Arbuscular Mycorrhiza differentially modulate the growth, photosynthetic performance, nutrients allocation, and stress response mechanisms triggered by a mild Zinc and Cadmium stress in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111873. [PMID: 37739018 DOI: 10.1016/j.plantsci.2023.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
This study aimed to assess the effectiveness of plant growth-promoting rhizobacteria (PGPR; Pseudomonas strain So_08) and arbuscular mycorrhizal fungi (AMF; Rhizoglomus irregulare BEG72 and Funneliformis mosseae BEG234) in mitigating the detrimental effects of cadmium (Cd) and zinc (Zn) stress in tomato plants. Plant biomass, root morphology, leaf relative water content, membrane stability, photosynthetic performance, chlorophyll content, and heavy metals (HMs) accumulation were determined. Furthermore, an ionomic profile was conducted to investigate whether microbial inoculants affected the uptake and allocation of macro- and micronutrients. Metabolomics with pathway analysis of both roots and leaves was performed to unravel the mechanisms underlying the differential responses to HMs stress. The findings revealed that the levels of HMs did not significantly affect plant growth parameters; however, they affected membrane stability, photosynthetic performance, nutrient allocation, and chlorophyll content. Cadmium was mainly accumulated in roots, whilst Zn exhibited accumulation in various plant organs. Our findings demonstrate the beneficial effects of PGPR and AMF in mitigating Cd and Zn stress in tomato plants. The microbial inoculations improved physiological parameters and induced differential accumulation of macro- and micronutrients, modulating nutrient uptake balance. These results provide insights into the mechanisms underlying the plant-microbe interactions and highlight the differential modulation of the biosynthetic pathways of secondary metabolites related to oxidative stress response, membrane lipids stability, and phytohormone crosstalk.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Angelica Barone
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erika Martinelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
6
|
Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:870-888. [PMID: 37598713 DOI: 10.1071/fp23021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Punjab University, Lahore 54590, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agricultural and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abbu Zaid
- Department of Botany, Government Gandhi Memorial Science College, Jammu, India
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Proietti S, Falconieri GS, Bertini L, Pascale A, Bizzarri E, Morales-Sanfrutos J, Sabidó E, Ruocco M, Monti MM, Russo A, Dziurka K, Ceci M, Loreto F, Caruso C. Beauveria bassiana rewires molecular mechanisms related to growth and defense in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4225-4243. [PMID: 37094092 PMCID: PMC10400115 DOI: 10.1093/jxb/erad148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Alberto Pascale
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Maurilia M Monti
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Francesco Loreto
- Department of Biology, Via Cinthia, University of Naples Federico II, 80126, Naples, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
8
|
Munir R, Jan M, Muhammad S, Afzal M, Jan N, Yasin MU, Munir I, Iqbal A, Yang S, Zhou W, Gan Y. Detrimental effects of Cd and temperature on rice and functions of microbial community in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121371. [PMID: 36878274 DOI: 10.1016/j.envpol.2023.121371] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal (HM) contamination and high environmental temperature (HT) are caused by anthropogenic activities that negatively impact soil microbial communities and agricultural productivity. Although HM contaminations have deleterious effects on microbes and plants; there are hardly any reports on the combined effects of HM and HT. Here, we reported that HT coupled with cadmium (Cd) accumulation in soil and irrigated water could seriously affect crop growth and productivity, alternatively influencing the microbial community and nutrient cycles of paddy soils in rice fields. We analyzed different mechanisms of plants and microflora in the rhizospheric region, such as plant rhizospheric nitrification, endophytes colonization, nutrient uptake, and physiology of temperature-sensitive (IR64) and temperature-resistant Huanghuazhan (HZ) rice cultivars against different Cd levels (2, 5 and 10 mg kg-1) with rice plants grown under 25 °C and 40 °C temperatures. Consequently, an increment in Cd accumulation was observed with rising temperature leading to enhanced expression of OsNTRs. In contrast, a greater decline in the microbial community was detected in IR64 cultivar than HZ. Similarly, ammonium oxidation, root-IAA, shoot-ABA production, and 16S rRNA gene abundance in the rhizosphere and endosphere were significantly influenced by HT and Cd levels, resulting in a significant decrease in the colonization of endophytes and the surface area of roots, leading to a decreased N uptake from the soil. Overall, the outcomes of this study unveiled the novel effects of Cd, temperature, and their combined effect on rice growth and functions of the microbial community. These results provide effective strategies to overcome Cd-phytotoxicity on the health of endophytes and rhizospheric bacteria in Cd-contaminated soil by using temperature-tolerant rice cultivars.
Collapse
Affiliation(s)
- Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Afzal
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Nazia Jan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Wang X, Chang W, Fan X, Li K, Zhang M, Ping Y, He X, Song F. Cocultivation with Solanum nigrum and inoculation with Rhizophagus intraradices can improve plant photosynthesis and antioxidant defense to alleviate cadmium toxicity to soybean. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114849. [PMID: 37011513 DOI: 10.1016/j.ecoenv.2023.114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
High Cd pollution can damage plant physiology and seriously threaten ecological security and human health. Therefore, we designed a cropping system, arbuscular mycorrhizal fungi (AMF) - soybean - Solanum nigrum L., to solve the high Cd pollution problem in an environmentally and economically friendly way. The results showed that AMF were able to break free from the constraints of cocultivation and still promote plant photosynthesis and growth in combined treatments to resist Cd stress. In addition, cocultivation combined with AMF improved the antioxidant defense to scavenge reactive oxygen species by promoting the production of antioxidant enzymes and nonenzyme substances in host plants. The glutathione content in soybean and the catalase activity in nightshade were recorded at the highest values under cocultivation combined with AMF treatment, which were 23.68% and 129.12% higher than those of monoculture without AMF treatments. The improvement in antioxidant defense alleviated oxidative stress, which was manifested by the reduction in Cd dense electronic particles in the ultrastructure and a 26.38% decrease in MDA content. Furthermore, this cropping mode combined the advantages of cocultivation to improve the Cd extraction efficiency and Rhizophagus intraradices to limit Cd accumulation and transport so that Cd was more accumulated and restricted in the roots of the cocultivated Solanum nigrum L., and the Cd concentration in soybean beans was reduced by 56% compared with the soybean monoculture without AMF treatment. Therefore, we suggest that this cropping system is a comprehensive and mild remediation technology suitable for highly Cd-contaminated soil.
Collapse
Affiliation(s)
- Xiaohui Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, Shandong Province, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, Shandong Province, China
| | - Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Kun Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Mengmeng Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xin He
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, Shandong Province, China.
| |
Collapse
|
10
|
Guo Y, Sommer N, Martin K, Rasche F. Rhizophagus irregularis improves Hg tolerance of Medicago truncatula by upregulating the Zn transporter genes ZIP2 and ZIP6. MYCORRHIZA 2023; 33:23-32. [PMID: 36625901 PMCID: PMC9938064 DOI: 10.1007/s00572-022-01100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) pollution of soils is a critical environmental problem. To rehabilitate Hg contaminated soils, arbuscular mycorrhizal (AM) fungi-based phytoremediation may be supportive, yet the functional potential of AM fungi in response to Hg exposure is unclear. In a greenhouse experiment, we assessed the response of Medicago truncatula (Hg tolerance index (TI), Hg partitioning) to different Hg concentrations [0 (Hg0), 25 (Hg25), 50 (Hg50) µg g-1] in treatments with (AM) and without (NM) inoculation of Rhizophagus irregularis. Additionally, zinc (Zn) uptake and the expression of two Zn transporter genes (ZIP2, ZIP6) were examined because Zn is an essential element for plants and shares the same outer electronic configuration as Hg, implying potential competition for the same transporters. The results showed that AM plants had a higher TI than NM plants. Plant roots were identified as dominant Hg reservoirs. AM inoculation reduced the root Hg concentration under Hg50 compared to the NM treatment. There was an interaction between Hg treatment and AM inoculation on Hg stem concentration, i.e., at Hg25, AM inoculation decreased the Hg translocation from roots to stems, while Hg translocation was increased at Hg50 compared to the NM treatment. Zn acquisition was improved by R. irregularis. The negative relationship between Hg and Zn concentrations in the roots of AM and NM plants implied potential competition for the same transporters, although the expression of Zn transporters was upregulated by AM inoculation at all Hg levels. In conclusion, this baseline study demonstrated that R. irregularis may play an important role in Hg tolerance of M. truncatula, suggesting its potential for Hg-contaminated phytoremediation.
Collapse
Affiliation(s)
- Yaqin Guo
- Department of Agronomy in the Tropics and Subtropics, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany
| | - Nadine Sommer
- Department of Crop Physiology of Specialty Crops, Institute of Crop Science, University of Hohenheim, 70593, Stuttgart, Germany
| | - Konrad Martin
- Department of Agronomy in the Tropics and Subtropics, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany
| | - Frank Rasche
- Department of Agronomy in the Tropics and Subtropics, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
11
|
Kaur H, Tashima, Singh S, Kumar P. Reconditioning of plant metabolism by arbuscular mycorrhizal networks in cadmium contaminated soils: Recent perspectives. Microbiol Res 2023; 268:127293. [PMID: 36586201 DOI: 10.1016/j.micres.2022.127293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) is one of the most perilous nonessential heavy metal for plants, owing to its high water solubility and obstruction with various physiological and biochemical processes. It enters food chain via plant uptake from contaminated soil, posing a grave menace to ecosystem and mankind. Green remediation comprises approaches intended at prudent use of natural resources for increasing profits to humans and environment. Arbuscular mycorrhizal (AM) fungi are considered a promising green technological tool for remedial of Cd-polluted soils. They are naturally associated with root system of plants in Cd-contaminated soils, evidencing their tolerance to Cd. AM can decrease Cd uptake by plants broadly through two strategies: (1) extracellular mechanisms involving Cd chelation by root exudates, binding to fungal cell wall/structures or to the glycoprotein glomalin; (2) intracellular means involving transfer via hyphal network, detoxification and vacuolar sequestration mediated by complexation of Cd with glutathione (GSH), phytochelatins (PCs), metallothioneins (MTs) and polyphosphate granules. Additionally, mycorrhizal symbiosis facilitates reconditioning of plants' metabolism primarily through dilution effect, increased water and mineral uptake. Recently, AM-induced remodelling of root cell wall synthesis has been reported to improve plant vigor and survival under Cd stressed environments. The present article highlights Cd impacts on AM growth, its diversity in Cd contaminated soils, and variations among diverse AM fungal species for imparting plant Cd tolerance. The most recent perspectives on AM-mediated Cd tolerance mechanisms in plants, including cellular and molecular studies have also been reviewed for successful utilization of these beneficial microbes in sustainable agriculture.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India..
| | - Tashima
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| | - Sandeep Singh
- Department of Botany, Kanya Maha Vidyalaya, Jalandhar, Punjab 144004, India
| | - Pankaj Kumar
- Department of Microbiology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Manduwala, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
12
|
Li W, Chen K, Li Q, Tang Y, Jiang Y, Su Y. Effects of Arbuscular Mycorrhizal Fungi on Alleviating Cadmium Stress in Medicago truncatula Gaertn. PLANTS (BASEL, SWITZERLAND) 2023; 12:547. [PMID: 36771633 PMCID: PMC9920379 DOI: 10.3390/plants12030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal contamination is a global problem for ecosystems and human health. Remediation of contaminated soils has received much attention in the last decade. Aided mitigation of heavy metal phytotoxicity by arbuscular mycorrhizal fungi (AMF) is a cost-effective and environmentally friendly strategy. This study was carried out to investigate the mitigation effect of AMF inoculation on heavy metal toxicity in Medicago truncatula under soil cadmium stress. Therefore, a pot experiment was designed to evaluate the growth, chlorophyll fluorescence, Cd uptake and distribution, malondialdehyde (MDA) content, root soil physicochemical properties, and metabolite profile analysis of M. truncatula with/without AMF inoculation in Cd (20 mg/Kg)-contaminated soil. The results showed that inoculating AMF under Cd stress might enhance photosynthetic efficiency, increase plant biomass, decrease Cd and MDA content, and improve soil physicochemical properties in M. truncatula. Non-targeted metabolite analysis revealed that inoculation with AMF under Cd stress significantly upregulated the production of various amino acids in inter-root metabolism and increase organic acid and phytohormone synthesis. This study provides information on the physiological responses of mycorrhizal plants to heavy metal stress, which could help provide deeper insight into the mechanisms of heavy metal remediation by AMF.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yuying Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu Su
- Sichuan Academy of Forestry, Chengdu 610036, China
| |
Collapse
|
13
|
Gómez-Gallego T, Valderas A, van Tuinen D, Ferrol N. Impact of arbuscular mycorrhiza on maize P 1B-ATPases gene expression and ionome in copper-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113390. [PMID: 35278990 DOI: 10.1016/j.ecoenv.2022.113390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, symbionts of most land plants, increase plant fitness in metal contaminated soils. To further understand the mechanisms of metal tolerance in the AM symbiosis, the expression patterns of the maize Heavy Metal ATPase (HMA) family members and the ionomes of non-mycorrhizal and mycorrhizal plants grown under different Cu supplies were examined. Expression of ZmHMA5a and ZmHMA5b, whose encoded proteins were predicted to be localized at the plasma membrane, was up-regulated by Cu in non-mycorrhizal roots and to a lower extent in mycorrhizal roots. Gene expression of the tonoplast ZmHMA3a and ZmHMA4 isoforms was up-regulated by Cu-toxicity in shoots and roots of mycorrhizal plants. AM mitigates the changes induced by Cu toxicity on the maize ionome, specially at the highest Cu soil concentration. Altogether these data suggest that in Cu-contaminated soils, AM increases expression of the HMA genes putatively encoding proteins involved in Cu detoxification and balances mineral nutrient uptake improving the nutritional status of the maize plants.
Collapse
Affiliation(s)
- Tamara Gómez-Gallego
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ascensión Valderas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Diederik van Tuinen
- INRAE/AgroSup/Université de Bourgogne UMR1347 Agroécologie, ERL CNRS, 6300 Dijon, France
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
14
|
Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:773815. [PMID: 35371142 PMCID: PMC8965506 DOI: 10.3389/fpls.2022.773815] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nauman Ali
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Naila Farooq
- Department of Soil and Environmental Science, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
15
|
Wang L, Jia X, Zhao Y, Zhang C, Zhao J. Effect of arbuscular mycorrhizal fungi in roots on antioxidant enzyme activity in leaves of Robinia pseudoacacia L. seedlings under elevated CO 2 and Cd exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118652. [PMID: 34890743 DOI: 10.1016/j.envpol.2021.118652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/25/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are easily influenced by increasing atmospheric CO2 concentration and heavy metals including cadmium (Cd), which can regulate antioxidant enzyme in host plants. Although the effect of AMF under individual conditions such as elevated CO2 (ECO2) and Cd on antioxidant enzyme in host plants has been reported widely, the effect of AMF under ECO2 + Cd receives little attention. In this study, a pot experiment was conducted to study the effect of AMF community in roots on superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities in leaves of 135-d Robinia pseudoacacia L. seedlings under ECO2 + Cd. The activities of SOD and CAT increased and POD activity and the richness and diversity of AMF community decreased under ECO2 + Cd relative to Cd alone. The richness and diversity of AMF were negatively related to Cd content in roots and leaves. The richness and OTUs of AMF community positively and AMF gene abundance negatively affected POD activity under the combined treatments. Superoxide dismutase and POD activities were negatively and positively related to Archaeospora and Scutellospora, respectively, under ECO2 + Cd. Cadmium in roots and leaves was negatively and significantly related to Glomus, Scutellospora, and Claroideoglomus abundance under ECO2 + Cd. Overall, AMF diversity and Archaeospora and Scutellospora in roots significantly influenced SOD, POD, and CAT activities. The response of AM symbiosis to ECO2 might regulate antioxidant capacity in host plants upon Cd exposure. Glomus, Scutellospora, and Claroideoglomus might be applied to phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| | - Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Yonghua Zhao
- School of Land Engineering, Chang'an University, Xi'an, 710054, PR China
| | - ChunYan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| | - Jiamin Zhao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| |
Collapse
|
16
|
Han Y, Zveushe OK, Dong F, Ling Q, Chen Y, Sajid S, Zhou L, Resco de Dios V. Unraveling the effects of arbuscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149222. [PMID: 34375244 DOI: 10.1016/j.scitotenv.2021.149222] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and one of the most toxic metals in the environment. Arbuscular mycorrhizal fungi (AMF) assisted phytoremediation can be used to remove Cd from polluted soils but the role of AMF, which mediate in Cd accumulation and tolerance, remains poorly understood. Here we inoculated Lolium perenne with two different AMF species (Glomus etunicatum and Glomus mosseae). Mycorrhizal L. perenne and non-mycorrhizal controls were exposed to Cd stress and we tested the effects of AMF mycorrhization on Cd uptake and subsequent tolerance, as well as the underlying mechanisms. Mycorrhizal infection increased root Cd2+ uptake and we observed that net Cd2+ influx was coupled with net Ca2+ influx. The inactivation of Ca2+ transporter channels decreased Cd2+ uptake in non-inoculated roots to a greater extent than in inoculated roots, indicating that AMF activates additional ion transport channels. In consequence, inoculated plants exhibited higher Cd accumulation in both roots and shoots than non-inoculated controls. However, AMF-inoculated plants showed higher chlorophyll concentrations, photosynthesis, and growth under Cd, indicating lower Cd toxicity in AMF-inoculated plants, despite the increase in Cd uptake. We observed that AMF-inoculated favored the isolation of Cd within cell walls and vacuoles, and had higher concentrations of superoxide dismutase activity and glutathione concentration in roots than non-inoculated plants, consequently experiencing less stress upon Cd exposure. Our results highlight the potential and mechanism of AMF for enhancing phytoremediation of L. perenne in heavy metal contaminated environments.
Collapse
Affiliation(s)
- Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Qin Ling
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yun Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sumbal Sajid
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida 25198, Spain; Department of Crop and Forest Sciences, Universitat de Lleida, Lleida 25198, Spain.
| |
Collapse
|
17
|
Kaya C, Ugurlar F, Ashraf M, Noureldeen A, Darwish H, Ahmad P. Methyl Jasmonate and Sodium Nitroprusside Jointly Alleviate Cadmium Toxicity in Wheat ( Triticum aestivum L.) Plants by Modifying Nitrogen Metabolism, Cadmium Detoxification, and AsA-GSH Cycle. FRONTIERS IN PLANT SCIENCE 2021; 12:654780. [PMID: 34421936 PMCID: PMC8374870 DOI: 10.3389/fpls.2021.654780] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/21/2021] [Indexed: 05/18/2023]
Abstract
The principal intent of the investigation was to examine the influence of joint application of methyl jasmonate (MeJA, 10 μM) and a nitric oxide-donor sodium nitroprusside (SNP, 100 μM) to wheat plants grown under cadmium (Cd as CdCl2, 100 μM) stress. Cd stress suppressed plant growth, chlorophylls (Chl), and PSII maximum efficiency (F v /F m ), but it elevated leaf and root Cd, and contents of leaf proline, phytochelatins, malondialdehyde, and hydrogen peroxide, as well as the activity of lipoxygenase. MeJA and SNP applied jointly or singly improved the concentrations of key antioxidant biomolecules, e.g., reduced glutathione and ascorbic acid and the activities of the key oxidative defense system enzymes such as catalase, superoxide dismutase, dehydroascorbate reductase, glutathione S-transferase, and glutathione reductase. Exogenously applied MeJA and SNP jointly or singly also improved nitrogen metabolism by activating the activities of glutamine synthetase, glutamate synthase, and nitrate and nitrite reductases. Compared with individual application of MeJA or SNP, the combined application of both showed better effect in terms of improving plant growth and key metabolic processes and reducing tissue Cd content, suggesting a putative interactive role of both compounds in alleviating Cd toxicity in wheat plants. MAIN FINDINGS The main findings are that exogenous application of methyl jasmonate and nitric oxide-donor sodium nitroprusside alleviated the cadmium (Cd)-induced adverse effects on growth of wheat plants grown under Cd by modulating key physiological processes and up-regulating enzymatic antioxidants and the ascorbic acid-glutathione cycle-related enzymes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
18
|
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123919. [PMID: 33254825 DOI: 10.1016/j.jhazmat.2020.123919] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
The heavy metal pollution is a worldwide problem and has received a serious concern for the ecosystem and human health. In the last decade, remediation of the agricultural polluted soil has attracted great attention. Phytoremediation is one of the technologies that effectively alleviate heavy metal toxicity, however, this technique is limited to many factors contributing to low plant growth rate and nature of metal toxicities. Arbuscular mycorrhizal fungi (AMF) assisted alleviation of heavy metal phytotoxicity is a cost-effective and environment-friendly strategy. AMF have a symbiotic relationship with the host plant. The bidirectional exchange of resources is a hallmark and also a functional necessity in mycorrhizal symbiosis. During the last few years, a significant progress in both physiological and molecular mechanisms regarding roles of AMF in the alleviation of heavy metals (HMs) toxicities in plants, acquisition of nutrients, and improving plant performance under toxic conditions of HMs has been well studied. This review summarized the current knowledge regarding AMF assisted remediation of heavy metals and some of the strategies used by mycorrhizal fungi to cope with stressful environments. Moreover, this review provides the information of both molecular and physiological responses of mycorrhizal plants as well as AMF to heavy metal stress which could be helpful for exploring new insight into the mechanisms of HMs remediation by utilizing AMF.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yizeng Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qianqian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Huayuan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Guoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lulu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Youjuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia, CY-1678, Cyprus
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|