1
|
Rajguru B, Shri M, Bhatt VD. Exploring microbial diversity in the rhizosphere: a comprehensive review of metagenomic approaches and their applications. 3 Biotech 2024; 14:224. [PMID: 39247454 PMCID: PMC11379838 DOI: 10.1007/s13205-024-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.
Collapse
Affiliation(s)
- Bhumi Rajguru
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Manju Shri
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Vaibhav D Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| |
Collapse
|
2
|
Raklami A, Slimani A, Oufdou K, Jemo M, Bechtaoui N, Imziln B, Meddich A, Navarro-Torre S, Rodríguez-Llorente ID, Pajuelo E. The potential of plant growth-promoting bacteria isolated from arid heavy metal contaminated environments in alleviating salt and water stresses in alfalfa. Lett Appl Microbiol 2024; 77:ovae075. [PMID: 39191534 DOI: 10.1093/lambio/ovae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Co-evolution of plant beneficial microbes in contaminated environments enhances plant growth and mitigates abiotic stress. However, few studies on heavy metal (HM) tolerant plant growth-promoting bacteria (PGPB) promoting crop growth in Morocco's farming areas affected by drought and salinity are available. Plant associated bacteria tolerant to HM and able to produce indole acetic acid and siderophores, display ACC-deaminase activity and solubilize phosphate, were isolated from long-term metal exposed environments. Tolerance to HM and biofilms formation in the absence or presence of HM were assessed. A consortium including two Ensifer meliloti strains (RhOL6 and RhOL8), one Pseudomonas sp. strain (DSP17), and one Proteus sp. strain (DSP1), was used to inoculate alfalfa (Medicago sativa) seedlings under various conditions, namely, salt stress (85 mM) and water stress (30% water holding capacity). Shoot and root dry weights of alfalfa were measured 60 days after sowing. In the presence of HM, DSP17 showed the greatest auxin production, whereas RhOL8 had the highest ACC-deaminase activity and DSP17 formed the densest biofilm. Root dry weight increased 138% and 195% in salt and water stressed plants, respectively, regarding non-inoculated controls. Our results confirm the improvement of alfalfa growth and mitigation of salt and drought stress upon inoculation.
Collapse
Affiliation(s)
- Anas Raklami
- AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Aiman Slimani
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMagE), Labeled Research Unit-CNRST No. 4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 2390, Morocco
- Laboratory of Agro-Food, Biotechnologies, and Valorization of Plant Bioresources (Agrobioval), Center of Agrobiotechnology and Bioengineering, Research Unit labeled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 2390, Morocco
| | - Khalid Oufdou
- AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMagE), Labeled Research Unit-CNRST No. 4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 2390, Morocco
| | - Martin Jemo
- AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Noura Bechtaoui
- Department of Biology, Nador Multidisciplinary Faculty, Mohamed First University, University Mohammed Premier, Mohammed VI BV, PB 524, Oujda 60000, Morocco
| | - Boujamaa Imziln
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMagE), Labeled Research Unit-CNRST No. 4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 2390, Morocco
| | - Abdelilah Meddich
- Laboratory of Agro-Food, Biotechnologies, and Valorization of Plant Bioresources (Agrobioval), Center of Agrobiotechnology and Bioengineering, Research Unit labeled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 2390, Morocco
| | - Salvadora Navarro-Torre
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/ Profesor García González, 2, Seville 41012, Spain
| | - Ignacio D Rodríguez-Llorente
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/ Profesor García González, 2, Seville 41012, Spain
| | - Eloísa Pajuelo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/ Profesor García González, 2, Seville 41012, Spain
| |
Collapse
|
3
|
Jayasinghe H, Chang HX, Knobloch S, Yang SH, Hendalage DPB, Ariyawansa KGSU, Liu PY, Stadler M, Ariyawansa HA. Metagenomic insight to apprehend the fungal communities associated with leaf blight of Welsh onion in Taiwan. FRONTIERS IN PLANT SCIENCE 2024; 15:1352997. [PMID: 38495366 PMCID: PMC10941342 DOI: 10.3389/fpls.2024.1352997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Plants are associated with a large diversity of microbes, and these complex plant-associated microbial communities are critical for plant health. Welsh onion (Allium fistulosum L.) is one of the key and oldest vegetable crops cultivated in Taiwan. The leaf of the Welsh onion is one of the famous spices in Taiwanese cuisine, thus, it is crucial to control foliar diseases. In recent years, Welsh onion cultivation in Taiwan has been severely threatened by the occurrence of leaf blight disease, greatly affecting their yield and quality. However, the overall picture of microbiota associated with the Welsh onion plant is still not clear as most of the recent etiological investigations were heavily based on the isolation of microorganisms from diseased plants. Therefore, studying the diversity of fungal communities associated with the leaf blight symptoms of Welsh onion may provide information regarding key taxa possibly involved in the disease. Therefore, this investigation was mainly designed to understand the major fungal communities associated with leaf blight to identify key taxa potentially involved in the disease and further evaluate any shifts in both phyllosphere and rhizosphere mycobiome assembly due to foliar pathogen infection by amplicon sequencing targeting the Internal Transcribed Spacer (ITS) 1 region of the rRNA. The alpha and beta-diversity analyses were used to compare the fungal communities and significant fungal groups were recognized based on linear discriminant analyses. Based on the results of relative abundance data and co-occurrence networks in symptomatic plants we revealed that the leaf blight of Welsh onion in Sanxing, is a disease complex mainly involving Stemphylium and Colletotrichum taxa. In addition, genera such as Aspergillus, Athelia and Colletotrichum were abundantly found associated with the symptomatic rhizosphere. Alpha-diversity in some fields indicated a significant increase in species richness in the symptomatic phyllosphere compared to the asymptomatic phyllosphere. These results will broaden our knowledge of pathogens of Welsh onion associated with leaf blight symptoms and will assist in developing effective disease management strategies to control the progress of the disease.
Collapse
Affiliation(s)
- Himanshi Jayasinghe
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Stephen Knobloch
- Department of Food Technology, Fulda University of Applied Sciences, Fulda, Germany
| | - Shan-Hua Yang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - D. P. Bhagya Hendalage
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Braunschweig, Germany
| | - Hiran A. Ariyawansa
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Vlasselaer L, Crauwels S, Lievens B, De Coninck B. Unveiling the microbiome of hydroponically cultivated lettuce: impact of Phytophthora cryptogea infection on plant-associated microorganisms. FEMS Microbiol Ecol 2024; 100:fiae010. [PMID: 38317643 PMCID: PMC10872686 DOI: 10.1093/femsec/fiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.
Collapse
Affiliation(s)
- Liese Vlasselaer
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Sam Crauwels
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Bart Lievens
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Hartvig I, Kosawang C, Rasmussen H, Kjær ED, Nielsen LR. Co-occurring orchid species associated with different low-abundance mycorrhizal fungi from the soil in a high-diversity conservation area in Denmark. Ecol Evol 2024; 14:e10863. [PMID: 38304271 PMCID: PMC10828919 DOI: 10.1002/ece3.10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Plant-fungal interactions are ubiquitous across ecosystems and contribute significantly to plant ecology and evolution. All orchids form obligate symbiotic relationships with specific fungi for germination and early growth, and the distribution of terrestrial orchid species has been linked to occurrence and abundance of specific orchid mycorrhizal fungi (OMF) in the soil. The availability of OMF can therefore be a habitat requirement that is relevant to consider when establishing management and conservation strategies for threatened orchid species, but knowledge on the spatial distribution of OMF in soil is limited. We here studied the mycorrhizal associations of three terrestrial orchid species (Anacamptis pyramidalis, Orchis purpurea and Platanthera chlorantha) found in a local orchid diversity hotspot in eastern Denmark, and investigated the abundance of the identified mycorrhizal fungi in the surrounding soil. We applied ITS metabarcoding to samples of orchid roots, rhizosphere soil and bulk soil collected at three localities, supplemented with standard barcoding of root samples with OMF specific primers, and detected 22 Operational Taxonomic Units (OTUs) putatively identified as OMF. The three orchid species displayed different patterns of OMF associations, supporting the theory that association with specific fungi constitutes part of an orchid's ecological niche allowing co-occurrence of many species in orchid-rich habitats. The identified mycorrhizal partners in the basidiomycete families Tulasnellaceae and Ceratobasidiaceae (Cantharallales) were detected in low abundance in rhizosphere soil, and appeared almost absent from bulk soil at the localities. This finding highlights our limited knowledge of the ecology and trophic mode of OMF outside orchid tissues, as well as challenges in the detection of specific OMF with standard methods. Potential implications for management and conservation strategies are discussed.
Collapse
Affiliation(s)
- Ida Hartvig
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Smithsonian Environmental Research CenterSmithsonian InstituteEdgewaterMarylandUSA
| | - Chatchai Kosawang
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Hanne Rasmussen
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Erik Dahl Kjær
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Lene Rostgaard Nielsen
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Yuan T, Qazi IH, Li J, Yang P, Yang H, Zhang X, Liu W, Liu J. Analysis of changes in bacterial diversity in healthy and bacterial wilt mulberry samples using metagenomic sequencing and culture-dependent approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1206691. [PMID: 37680359 PMCID: PMC10481342 DOI: 10.3389/fpls.2023.1206691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023]
Abstract
Introduction Mulberry bacterial wilt is a serious destructive soil-borne disease caused by a complex and diverse group of pathogenic bacteria. Given that the bacterial wilt has been reported to cause a serious damage to the yield and quality of mulberry, therefore, elucidation of its main pathogenic groups is essential in improving our understanding of this disease and for the development of its potential control measures. Methods In this study, combined metagenomic sequencing and culture-dependent approaches were used to investigate the microbiome of healthy and bacterial wilt mulberry samples. Results The results showed that the healthy samples had higher bacterial diversity compared to the diseased samples. Meanwhile, the proportion of opportunistic pathogenic and drug-resistant bacterial flora represented by Acinetobacter in the diseased samples was increased, while the proportion of beneficial bacterial flora represented by Proteobacteria was decreased. Ralstonia solanacearum species complex (RSSC), Enterobacter cloacae complex (ECC), Klebsiella pneumoniae, K. quasipneumoniae, K. michiganensis, K. oxytoca, and P. ananatis emerged as the main pathogens of the mulberry bacterial wilt. Discussion In conclusion, this study provides a valuable reference for further focused research on the bacterial wilt of mulberry and other plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiping Liu
- South China Agriculture University, College of Animal Science, Regional Sericulture Training Center for Asia-Pacific, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Ryabova OV, Gagarina AA. Actinomycetes as the Basis of Probiotics for Plants. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Shen Z, Thomashow LS, Ou Y, Tao C, Wang J, Xiong W, Liu H, Li R, Shen Q, Kowalchuk GA. Shared Core Microbiome and Functionality of Key Taxa Suppressive to Banana Fusarium Wilt. Research (Wash D C) 2022; 2022:9818073. [PMID: 36204250 PMCID: PMC9513836 DOI: 10.34133/2022/9818073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Microbial contributions to natural soil suppressiveness have been reported for a range of plant pathogens and cropping systems. To disentangle the mechanisms underlying suppression of banana Panama disease caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4), we used amplicon sequencing to analyze the composition of the soil microbiome from six separate locations, each comprised of paired orchards, one potentially suppressive and one conducive to the disease. Functional potentials of the microbiomes from one site were further examined by shotgun metagenomic sequencing after soil suppressiveness was confirmed by greenhouse experiments. Potential key antagonists involved in disease suppression were also isolated, and their activities were validated by a combination of microcosm and pot experiments. We found that potentially suppressive soils shared a common core community with relatively low levels of F. oxysporum and relatively high proportions of Myxococcales, Pseudomonadales, and Xanthomonadales, with five genera, Anaeromyxobacter, Kofleria, Plesiocystis, Pseudomonas, and Rhodanobacter being significantly enriched. Further, Pseudomonas was identified as a potential key taxon linked to pathogen suppression. Metagenomic analysis showed that, compared to the conducive soil, the microbiome in the disease suppressive soil displayed a significantly greater incidence of genes related to quorum sensing, biofilm formation, and synthesis of antimicrobial compounds potentially active against Foc4. We also recovered a higher frequency of antagonistic Pseudomonas isolates from disease suppressive experimental field sites, and their protective effects against banana Fusarium wilt disease were demonstrated under greenhouse conditions. Despite differences in location and soil conditions, separately located suppressive soils shared common characteristics, including enrichment of Myxococcales, Pseudomonadales, and Xanthomonadales, and enrichment of specific Pseudomonas populations with antagonistic activity against the pathogen. Moreover, changes in functional capacity toward an increase in quorum sensing, biofilm formation, and antimicrobial compound synthesizing involve in disease suppression.
Collapse
Affiliation(s)
- Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Linda S. Thomashow
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, USA
| | - Yannan Ou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Jiabao Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - George A. Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, Netherlands
| |
Collapse
|
9
|
Dubey A, Malla MA, Kumar A. Taxonomical and functional bacterial community profiling in disease-resistant and disease-susceptible soybean cultivars. Braz J Microbiol 2022; 53:1355-1370. [PMID: 35415800 PMCID: PMC9433584 DOI: 10.1007/s42770-022-00746-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Highly varied bacterial communities inhabiting the soybean rhizosphere perform important roles in its growth and production; nevertheless, little is known about the changes that occur in these communities under disease-stress conditions. The present study investigated the bacterial diversity and their metabolic profile in the rhizosphere of disease-resistant (JS-20-34) and disease-susceptible (JS-335) soybean (Glycine max (L.) Merr.) cultivars using 16S rRNA amplicon sequencing and community-level physiological profiling (CLPP). In disease-resistant soybean (AKADR) samples, the most dominating phyla were Actinobacteria (40%) followed by Chloroflexi (24%), Proteobacteria (20%), and Firmicutes (12%), while in the disease-susceptible (AKADS) sample, the most dominating phyla were Proteobacteria (35%) followed by Actinobacteria (27%) and Bacteroidetes (17%). Functional profiling of bacterial communities was done using the METAGENassist, and PICRUSt2 software, which shows that AKADR samples have more ammonifying, chitin degrading, nitrogen-fixing, and nitrite reducing bacteria compared to AKADS rhizosphere samples. The bacterial communities present in disease-resistant samples were significantly enriched with genes involved in nitrogen fixation, carbon fixation, ammonification, denitrification, and antibiotic production. Furthermore, the CLPP results show that carbohydrates and carboxylic acids were the most frequently utilized nutrients by the microbes. The principal component analysis (PCA) revealed that the AKADR soils had higher functional activity (strong association with the Shannon-Wiener index, richness index, and hydrocarbon consumption) than AKADS rhizospheric soils. Overall, our findings suggested that the rhizosphere of resistant varieties of soybean comprises of beneficial bacterial population over susceptible varieties.
Collapse
Affiliation(s)
- Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Muneer Ahmad Malla
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
10
|
Kaushal M, Kolombia Y, Alakonya AE, Kuate AF, Ortega-Beltran A, Amah D, Masso C. Subterranean Microbiome Affiliations of Plantain (Musa spp.) Under Diverse Agroecologies of Western and Central Africa. MICROBIAL ECOLOGY 2022; 84:580-593. [PMID: 34585290 PMCID: PMC9436888 DOI: 10.1007/s00248-021-01873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Plantain (Musa spp.) is a staple food crop and an important source of income for millions of smallholder farmers in sub-Saharan Africa (SSA). However, there is a paucity of knowledge on soil microbial diversity in agroecologies where plantains are grown. Microbial diversity that increases plant performance with multi-trophic interactions involving resiliency to environmental constraints is greatly needed. For this purpose, the bacterial and fungal communities of plantain fields in high rainfall forests (HR) and derived savannas (SV) were studied using Illumina MiSeq for 16S rDNA and ITS amplicon deep sequencing. Microbial richness (α- and β-diversity), operational taxonomic units, and Simpson and Shannon-Wiener indexes (observed species (Sobs), Chao, ACE; P < 0.05) suggested that there were significant differences between HR and SV agroecologies among the most abundant bacterial communities, and some specific dynamic response observed from fungal communities. Proteobacteria formed the predominant bacterial phylum (43.7%) succeeded by Firmicutes (24.7%), and Bacteroidetes (17.6%). Ascomycota, Basidiomycota, and Zygomycota were the three most dominant fungal phyla in both agroecologies. The results also revealed an immense array of beneficial microbes in the roots and rhizosphere of plantain, including Acinetobacter, Bacillus, and Pseudomonas spp. COG and KEGG Orthology database depicted significant variations in the functional attributes of microbes found in the rhizosphere to roots. This result indicates that the different agroecologies and host habitats differentially support the dynamic microbial profile and that helps in altering the structure in the rhizosphere zone for the sake of promoting synergistic host-microbe interactions particularly under resource-poor conditions of SSA.
Collapse
Affiliation(s)
- Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Mikocheni B, Dar es Salaam, Tanzania.
| | - Yao Kolombia
- International Institute of Tropical Agriculture (IITA), Oyo Road, PMB 5320, Ibadan, 200001, Nigeria
| | - Amos Emitati Alakonya
- International Maize and Wheat Improvement Center (CIMMYT), México-Veracruz, El Batán Km. 45, 56237, Texcoco, Mexico
| | - Apollin Fotso Kuate
- International Institute of Tropical Agriculture (IITA), BP 2008 (Messa), Yaounde, Cameroon
| | - Alejandro Ortega-Beltran
- International Institute of Tropical Agriculture (IITA), Oyo Road, PMB 5320, Ibadan, 200001, Nigeria
| | - Delphine Amah
- International Institute of Tropical Agriculture (IITA), Oyo Road, PMB 5320, Ibadan, 200001, Nigeria
| | - Cargele Masso
- International Institute of Tropical Agriculture (IITA), BP 2008 (Messa), Yaounde, Cameroon
| |
Collapse
|
11
|
Iquebal MA, Jagannadham J, Jaiswal S, Prabha R, Rai A, Kumar D. Potential Use of Microbial Community Genomes in Various Dimensions of Agriculture Productivity and Its Management: A Review. Front Microbiol 2022; 13:708335. [PMID: 35655999 PMCID: PMC9152772 DOI: 10.3389/fmicb.2022.708335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Agricultural productivity is highly influenced by its associated microbial community. With advancements in omics technology, metagenomics is known to play a vital role in microbial world studies by unlocking the uncultured microbial populations present in the environment. Metagenomics is a diagnostic tool to target unique signature loci of plant and animal pathogens as well as beneficial microorganisms from samples. Here, we reviewed various aspects of metagenomics from experimental methods to techniques used for sequencing, as well as diversified computational resources, including databases and software tools. Exhaustive focus and study are conducted on the application of metagenomics in agriculture, deciphering various areas, including pathogen and plant disease identification, disease resistance breeding, plant pest control, weed management, abiotic stress management, post-harvest management, discoveries in agriculture, source of novel molecules/compounds, biosurfactants and natural product, identification of biosynthetic molecules, use in genetically modified crops, and antibiotic-resistant genes. Metagenomics-wide association studies study in agriculture on crop productivity rates, intercropping analysis, and agronomic field is analyzed. This article is the first of its comprehensive study and prospects from an agriculture perspective, focusing on a wider range of applications of metagenomics and its association studies.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratna Prabha
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
12
|
Mertens A, Bawin Y, Vanden Abeele S, Kallow S, Swennen R, Vu DT, Vu TD, Minh HT, Panis B, Vandelook F, Janssens SB. Phylogeography and conservation gaps of Musa balbisiana Colla genetic diversity revealed by microsatellite markers. GENETIC RESOURCES AND CROP EVOLUTION 2022; 69:2515-2534. [PMID: 36017134 PMCID: PMC9393128 DOI: 10.1007/s10722-022-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Collection and storage of crop wild relative (CWR) germplasm is crucial for preserving species genetic diversity and crop improvement. Nevertheless, much of the genetic variation of CWRs is absent in ex situ collections and detailed passport data are often lacking. Here, we focussed on Musa balbisiana, one of the two main progenitor species of many banana cultivars. We investigated the genetic structure of M. balbisiana across its distribution range using microsatellite markers. Accessions stored at the International Musa Germplasm Transit Centre (ITC) ex situ collection were compared with plant material collected from multiple countries and home gardens from Vietnam. Genetic structure analyses revealed that accessions could be divided into three main clusters. Vietnamese and Chinese populations were assigned to a first and second cluster respectively. A third cluster consisted of ITC and home garden accessions. Samples from Papua New Guinea were allocated to the cluster with Chinese populations but were assigned to a separate fourth cluster if the number of allowed clusters was set higher. Only one ITC accession grouped with native M. balbisiana populations and one group of ITC accessions was nearly genetically identical to home garden samples. This questioned their wild status, including accessions used as reference for wild M. balbisiana. Moreover, most ITC accessions and home garden samples were genetically distinct from wild populations. Our results highlight that additional germplasm should be collected from the native distribution range, especially from Northeast India, Myanmar, China, and the Philippines and stored for ex situ conservation at the ITC. The lack of passport data for many M. balbisiana accessions also complicates the interpretation of genetic information in relation to cultivation and historical dispersal routes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10722-022-01389-4.
Collapse
Affiliation(s)
- Arne Mertens
- Department of Biosystems, Laboratory of Tropical Crop Improvement, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Yves Bawin
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Simon Kallow
- Department of Biosystems, Laboratory of Tropical Crop Improvement, KU Leuven, Leuven, Belgium
- Royal Botanic Gardens Kew, Millennium Seed Bank, Ardingly, UK
| | - Rony Swennen
- Department of Biosystems, Laboratory of Tropical Crop Improvement, KU Leuven, Leuven, Belgium
- International Institute of Tropical Agriculture, Kampala, Uganda
| | - Dang Toan Vu
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Tuong Dang Vu
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
| | - Ho Thi Minh
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
| | - Bart Panis
- Bioversity International, Leuven, Belgium
| | | | - Steven B. Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Gómez-Lama Cabanás C, Wentzien NM, Zorrilla-Fontanesi Y, Valverde-Corredor A, Fernández-González AJ, Fernández-López M, Mercado-Blanco J. Impacts of the Biocontrol Strain Pseudomonas simiae PICF7 on the Banana Holobiont: Alteration of Root Microbial Co-occurrence Networks and Effect on Host Defense Responses. Front Microbiol 2022; 13:809126. [PMID: 35242117 PMCID: PMC8885582 DOI: 10.3389/fmicb.2022.809126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The impact of the versatile biocontrol and plant-growth-promoting rhizobacteria Pseudomonas simiae PICF7 on the banana holobiont under controlled conditions was investigated. We examine the fate of this biological control agent (BCA) upon introduction in the soil, the effect on the banana root microbiota, and the influence on specific host genetic defense responses. While the presence of strain PICF7 significantly altered neither the composition nor the structure of the root microbiota, a significant shift in microbial community interactions through co-occurrence network analysis was observed. Despite the fact that PICF7 did not constitute a keystone, the topology of this network was significantly modified-the BCA being identified as a constituent of one of the main network modules in bacterized plants. Gene expression analysis showed the early suppression of several systemic acquired resistance and induced systemic resistance (ISR) markers. This outcome occurred at the time in which the highest relative abundance of PICF7 was detected. The absence of major and permanent changes on the banana holobiont upon PICF7 introduction poses advantages regarding the use of this beneficial rhizobacteria under field conditions. Indeed a BCA able to control the target pathogen while altering as little as possible the natural host-associated microbiome should be a requisite when developing effective bio-inoculants.
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Nuria M. Wentzien
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Antonio J. Fernández-González
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
14
|
Jamil FN, Hashim AM, Yusof MT, Saidi NB. Analysis of soil bacterial communities and physicochemical properties associated with Fusarium wilt disease of banana in Malaysia. Sci Rep 2022; 12:999. [PMID: 35046475 PMCID: PMC8770495 DOI: 10.1038/s41598-022-04886-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4) is a soil-borne disease that infects bananas, causing severe economic losses worldwide. To reveal the relationship between bacterial populations and FW, the bacterial communities of healthy and TR4-infected rhizosphere and bulk soils were compared using 16S rRNA gene sequencing. Soil physicochemical properties associated with FW were also analyzed. We found the community structure of bacteria in the healthy and TR4 infected rhizosphere was significantly different compared to bulk soil within the same farm. The rhizosphere soils of infected plants exhibited higher richness and diversity than healthy plant with significant abundance of Proteobacteria. In the healthy rhizosphere soil, beneficial bacteria such as Burkholderia and Streptomyces spp. were more abundant. Compared to the infected rhizosphere soil, healthy rhizosphere soil was associated with RNA metabolism and transporters pathways and a high level of magnesium and cation exchange capacity. Overall, we reported changes in the key taxa of rhizospheric bacterial communities and soil physicochemical properties of healthy and FW-infected plants, suggesting their potential role as indicators for plant health.
Collapse
Affiliation(s)
- Fatin Nadiah Jamil
- Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noor Baity Saidi
- Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Tebele SM, Marks RA, Farrant JM. Two Decades of Desiccation Biology: A Systematic Review of the Best Studied Angiosperm Resurrection Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122784. [PMID: 34961255 PMCID: PMC8706221 DOI: 10.3390/plants10122784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resiliency Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| |
Collapse
|
16
|
Kumar A, Dubey A, Malla MA, Dames J. Pyrosequencing and phenotypic microarray to decipher bacterial community variation in Sorghum bicolor (L.) Moench rhizosphere. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100025. [PMID: 34841316 PMCID: PMC8610313 DOI: 10.1016/j.crmicr.2021.100025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Different cultivation practices and climatic conditions play an important role in governing and modulating soil microbial communities. This work, investigated the changes in bacterial community composition at taxonomic and functional level in rhizosphere soil of sweet sorghum under extensive cultivation practices at three different field sites of South Africa. 16S rRNA amplicon sequencing data revealed that at the phylum level, the dominant group was Cyanobacteria with a relative abundance of 63.3%, 71.8% and 81.6% from ASHSOIL1, ASHSOIL2, and ASHSOIL3, respectively. Community-level physiological profiling (CLPP) analysis revealed that the metabolic activity of the bacterial community in ASHSOIL3 was the highest, followed by ASHSOIL1 and ASHSOIL2. Overall, this study showed that soil pH, nutrient availability and cultivation practices played significant roles in governing the bacterial community composition in sorghum rhizosphere.
Different cultivation practices and climatic conditions play an important role in governing and modulating soil microbial communities as well as soil health. This study investigated, for the first time, keystone microbial taxa inhabiting the rhizosphere of sweet sorghum (Sorghum bicolor) under extensive cultivation practices at three different field sites of South Africa (North West-South (ASHSOIL1); Mpumalanga-West – (ASHSOIL2); and Free State-North West – (ASHSOIL3)). Soil analysis of these sites revealed differences in P, K, Mg, and pH. 16S rRNA amplicon sequencing data revealed that the rhizosphere bacterial microbiome differed significantly both in the structure and composition across the samples. The sequencing data revealed that at the phylum level, the dominant group was Cyanobacteria with a relative abundance of 63.3%, 71.8%, and 81.6% from ASHSOIL1, ASHSOIL2, and ASHSOIL3, respectively. Putative metabolic requirements analyzed by METAGENassist software revealed the ASHSOIL1 sample as the prominent ammonia degrader (21.1%), followed by ASHSOIL3 (17.3%) and ASHSOIL2 (11.1%). The majority of core-microbiome taxa were found to be from Cyanobacteria, Bacteroidetes, and Proteobacteria. Functionally, community-level physiological profiling (CLPP) analysis revealed that the metabolic activity of the bacterial community in ASHSOIL3 was the highest, followed by ASHSOIL1 and ASHSOIL2. This study showed that soil pH and nutrient availability and cultivation practices played significant roles in governing the bacterial community composition in the sorghum rhizosphere across the different sites.
Collapse
Affiliation(s)
- Ashwani Kumar
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Metagenomics and Secretomics Research laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar 470003, MP, India
- Corresponding author at: Metagenomics and Secretomics Research laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar 470003, MP, India.
| | - Anamika Dubey
- Metagenomics and Secretomics Research laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar 470003, MP, India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (Central University), Sagar 470003, MP, India
| | - Joanna Dames
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
17
|
Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. BIORESOURCE TECHNOLOGY 2021; 339:125589. [PMID: 34304098 DOI: 10.1016/j.biortech.2021.125589] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Worldwide, heavy metals pollution is mostly caused by rapid population growth and industrial development which is accumulated in food webs causing a serious public health risk. Endophytic microorganisms have a variety of mechanisms for metal sequestration having metal biosorption capacities.Endophytic organisms like bacteria and fungi provide beneficial qualities that help plants to improve their health, reduce stress, and detoxify metals. Endophytes have a higher proclivity for improving metal and mineral solubility by cells that secrete low-molecular-weight organic acids and metal-specific ligands like siderophores, which change the pH of the soil and improve binding activity. Protein-related approaches like chromatin immunoprecipitation sequencing (ChIP-Seq) and modified enzyme-linked immunosorbent assay (ELISA test) can represent endophytic bacterial community and DNA-protein interactions during metal reduction. This review explored the role of endophytes in bioremediation approaches that can help in analyzing the potential and prospects in response to industrial effluents' detoxification.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
18
|
Ochieno DM. Fusarium oxysporum V5w2 is a non-beneficial endophyte that interacts with Radopholus similis in a wilt disease complex of banana. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e01014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Probiotic Endophytes for More Sustainable Banana Production. Microorganisms 2021; 9:microorganisms9091805. [PMID: 34576701 PMCID: PMC8469954 DOI: 10.3390/microorganisms9091805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Climatic factors and pathogenic fungi threaten global banana production. Moreover, bananas are being cultivated using excessive amendments of nitrogen and pesticides, which shift the microbial diversity in plants and soil. Advances in high-throughput sequencing (HTS) technologies and culture-dependent methods have provided valuable information about microbial diversity and functionality of plant-associated endophytic communities. Under stressful (biotic or abiotic) conditions, plants can recruit sets of microorganisms to alleviate specific potentially detrimental effects, a phenomenon known as “cry for help”. This mechanism is likely initiated in banana plants infected by Fusarium wilt pathogen. Recently, reports demonstrated the synergistic and cumulative effects of synthetic microbial communities (SynComs) on naturally occurring plant microbiomes. Indeed, probiotic SynComs have been shown to increase plant resilience against biotic and abiotic stresses and promote growth. This review focuses on endophytic bacterial diversity and keystone taxa of banana plants. We also discuss the prospects of creating SynComs composed of endophytic bacteria that could enhance the production and sustainability of Cavendish bananas (Musa acuminata AAA), the fourth most important crop for maintaining global food security.
Collapse
|
20
|
Nisrina L, Effendi Y, Pancoro A. Revealing the role of Plant Growth Promoting Rhizobacteria in suppressive soils against Fusarium oxysporum f.sp. cubense based on metagenomic analysis. Heliyon 2021; 7:e07636. [PMID: 34401567 PMCID: PMC8353484 DOI: 10.1016/j.heliyon.2021.e07636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/23/2020] [Accepted: 07/19/2021] [Indexed: 02/04/2023] Open
Abstract
Fusarium oxysporum f.sp. cubense (Foc) is a soil-borne pathogen causing fusarium wilt banana disease. Management of soil-borne disease generally required the application of toxic pesticides or fungicides strongly affect the soil microbiomes ecosystem. Suppressive soil is a promising method for controlling soil-borne pathogens in which soil microbiomes may affect the suppressiveness. The comparative analysis of microbial diversity was conducted from suppressive and conducive soils by analyzing whole shotgun metagenomic DNA data. Two suppressive soil samples and two conducive soil samples were collected from a banana plantation in Sukabumi, West Java, Indonesia. Each soil sample was prepared by mixing the soil samples collected from three points sampling sites with 20 cm depth. Analysis of microbial abundance, diversity, co-occurrence network using Metagenome Analyzer 6 (MEGAN6) and functional analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. Data showed the abundance of Actinobacteria, Betaproteobacteria, Rhizobiales, Burkholderiales, Bradyrhizobiaceae, Methylobacteriaceae, Rhodopseudomonas palustris, and Methylobacterium nodulans were higher in the suppressive than conducive soils. Interestingly, those bacteria groups are known functionally as members of Plant Growth Promoting Rhizobacteria (PGPR). The co-occurrence analysis showed Pseudomonas, Burkholderia, and Streptomyces were present in the suppressive soils, while Bacillus and more Streptomyces were found in the conducive soils. Furthermore, the relative abundance of Pseudomonas, Burkholderia, Bacillus, and Streptomyces was performed. The analysis showed that the relative abundance of Pseudomonas and Burkholderia was higher in the suppressive than conducive soils. Therefore, it assumed Pseudomonas and Burkholderia play a role in suppressing Foc based on co-occurrence and abundance analysis. Functional analysis of Pseudomonas and Burkholderia showed that the zinc/manganese transport system was higher in the suppressive than conducive soils. In contrast, the phosphate transport system was not found in conducive soils. Both functions are may be responsible for the synthesis of a siderophore and phosphate solubilization. In conclusion, this study provides information that PGPR may be contributing to Foc growth suppressing by releasing secondary metabolites.
Collapse
Affiliation(s)
- Lulu' Nisrina
- School of Life Sciences and Technology, Bandung Institute of Technology, Jalan Ganesha 10, 40132, Bandung, Indonesia
| | - Yunus Effendi
- Department of Biology, Al-Azhar Univerisity of Indonesia, Jalan Sisimangaraja 2, 12110, Jakarta, Indonesia
| | - Adi Pancoro
- School of Life Sciences and Technology, Bandung Institute of Technology, Jalan Ganesha 10, 40132, Bandung, Indonesia
| |
Collapse
|
21
|
Kaushal M, Mahuku G, Swennen R. Comparative Transcriptome and Expression Profiling of Resistant and Susceptible Banana Cultivars during Infection by Fusarium oxysporum. Int J Mol Sci 2021; 22:3002. [PMID: 33809411 PMCID: PMC7999991 DOI: 10.3390/ijms22063002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive diseases of banana. Methods to control the disease are still inadequate. The present investigation targeted expression of defense-related genes in tissue cultured banana plantlets of Fusarium resistant and susceptible cultivars after infection with biological control agents (BCAs) and Fusarium (Foc race 1). In total 3034 differentially expressed genes were identified which annotated to 58 transcriptional families (TF). TF families such as MYB, bHLH and NAC TFs were mostly up-regulated in response to pathogen stress, whereas AP2/EREBP were mostly down-regulated. Most genes were associated with plant-pathogen response, plant hormone signal transduction, starch and sucrose metabolism, cysteine and methionine metabolism, flavonoid biosynthesis, selenocompound metabolism, phenylpropanoid biosynthesis, mRNA surveillance pathway, mannose type O-glycan biosynthesis, amino acid and nucleotide sugar metabolism, cyanoamino acid metabolism, and hormone signal transduction. Our results showed that the defense mechanisms of resistant and susceptible banana cultivars treated with BCAs, were regulated by differentially expressed genes in various categories of defense pathways. Furthermore, the association with different resistant levels might serve as a strong foundation for the control of Fusarium wilt of banana.
Collapse
Affiliation(s)
- Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Mikocheni B, Dar es Salaam 34441, Tanzania
| | - George Mahuku
- International Institute of Tropical Agriculture (IITA), Kampala 7878, Uganda;
| | - Rony Swennen
- International Institute of Tropical Agriculture (IITA), Arusha 447, Tanzania;
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
22
|
Response to Edaphoclimatic Conditions and Crop Management of the Bacterial Microbiome of Musa acuminata Rhizosphere Profiled by 16S rRNA Gene Amplicon Sequencing. Microbiol Resour Announc 2021; 10:10/10/e01437-20. [PMID: 33707338 PMCID: PMC7953301 DOI: 10.1128/mra.01437-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial rhizospheric microbiomes of Musa acuminata cultivated in farms close to the west and east Mexican coasts and with different climate, soils, and crop management practices were characterized by 16S rRNA gene amplicon sequencing. Results showed that rhizospheric microbiome composition changed along with seasonal weather but were mostly indifferent to soil type.
Collapse
|
23
|
Gómez-Lama Cabanás C, Fernández-González AJ, Cardoni M, Valverde-Corredor A, López-Cepero J, Fernández-López M, Mercado-Blanco J. The Banana Root Endophytome: Differences between Mother Plants and Suckers and Evaluation of Selected Bacteria to Control Fusarium oxysporum f.sp. cubense. J Fungi (Basel) 2021; 7:jof7030194. [PMID: 33803181 PMCID: PMC8002102 DOI: 10.3390/jof7030194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to disentangle the structure, composition, and co-occurrence relationships of the banana (cv. Dwarf Cavendish) root endophytome comparing two phenological plant stages: mother plants and suckers. Moreover, a collection of culturable root endophytes (>1000) was also generated from Canary Islands. In vitro antagonism assays against Fusarium oxysporum f.sp. cubense (Foc) races STR4 and TR4 enabled the identification and characterization of potential biocontrol agents (BCA). Eventually, three of them were selected and evaluated against Fusarium wilt of banana (FWB) together with the well-known BCA Pseudomonas simiae PICF7 under controlled conditions. Culturable and non-culturable (high-throughput sequencing) approaches provided concordant information and showed low microbial diversity within the banana root endosphere. Pseudomonas appeared as the dominant genus and seemed to play an important role in the banana root endophytic microbiome according to co-occurrence networks. Fungal communities were dominated by the genera Ophioceras, Cyphellophora, Plecosphaerella, and Fusarium. Overall, significant differences were found between mother plants and suckers, suggesting that the phenological stage determines the recruitment and organization of the endophytic microbiome. While selected native banana endophytes showed clear antagonism against Foc strains, their biocontrol performance against FWB did not improve the outcome observed for a non-indigenous reference BCA (strain PICF7).
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (C.G.-L.C.); (M.C.); (A.V.-C.)
| | - Antonio J. Fernández-González
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda, 18008 Granada, Spain; (A.J.F.-G.); (M.F.-L.)
| | - Martina Cardoni
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (C.G.-L.C.); (M.C.); (A.V.-C.)
| | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (C.G.-L.C.); (M.C.); (A.V.-C.)
| | - Javier López-Cepero
- Departamento Técnico de Coplaca S.C. Organización de Productores de Plátanos, Avd. de Anaga, 11-38001 Santa Cruz de Tenerife, Spain;
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda, 18008 Granada, Spain; (A.J.F.-G.); (M.F.-L.)
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (C.G.-L.C.); (M.C.); (A.V.-C.)
- Correspondence: ; Tel.: +34-957-499261
| |
Collapse
|
24
|
Sánchez-Sandoval ME, Racagni Di-Palma GE, González-Mendoza VM, Cab-Guillén YA, Muñoz-Sanchez JA, Ramos-Díaz A, Hernández-Sotomayor SMT. Phospholipid signaling pathway in Capsicum chinense suspension cells as a key response to consortium infection. BMC PLANT BIOLOGY 2021; 21:62. [PMID: 33494714 PMCID: PMC7836502 DOI: 10.1186/s12870-021-02830-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/07/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. RESULTS Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. CONCLUSIONS Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis' defense responses to damping-off diseases.
Collapse
Affiliation(s)
- María E Sánchez-Sandoval
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | | | - Victor M González-Mendoza
- CONA CYT- Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Yahaira A Cab-Guillén
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - José A Muñoz-Sanchez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Ana Ramos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Subsede Sureste, Yucatán, Mexico
| | - S M Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico.
| |
Collapse
|
25
|
Zorrilla-Fontanesi Y, Pauwels L, Panis B, Signorelli S, Vanderschuren H, Swennen R. Strategies to revise agrosystems and breeding to control Fusarium wilt of banana. NATURE FOOD 2020; 1:599-604. [PMID: 37128105 DOI: 10.1038/s43016-020-00155-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/26/2020] [Indexed: 05/03/2023]
Abstract
The recent emergence of the fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), the deadly strain that causes Fusarium wilt of banana, has put the banana production chain for export under threat. Here, we propose research priorities and complementary strategies and challenges for effective and efficient mitigation management of Fusarium wilt. Our strategies include diversifying the agrosystems to increase crop resilience, as well as using precision breeding approaches to rapidly assess and introduce disease-resistance genes to develop stable and complete Foc resistance in commercial banana cultivars.
Collapse
Affiliation(s)
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics (Technologiepark 71), Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology (Technologiepark 71), Ghent, Belgium
| | - Bart Panis
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- Bioversity International, Heverlee, Belgium
| | - Santiago Signorelli
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Hervé Vanderschuren
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium.
- Plant Genetics Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium.
- Bioversity International, Heverlee, Belgium.
- International Institute of Tropical Agriculture (IITA), C/o The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania.
| |
Collapse
|