1
|
Prihatna C, Yan Q. Exopolysaccharide is required by Paraburkholderia phytofirmans PsJN to confer drought-stress tolerance in pea. Front Microbiol 2024; 15:1442001. [PMID: 39184028 PMCID: PMC11341992 DOI: 10.3389/fmicb.2024.1442001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Paraburkholderia phytofirmans PsJN is a plant symbiotic bacterium that can colonize a broad spectrum of plant hosts and frequently shows beneficial effects on plant growth. Exopolysaccharide (EPS) is known to be important in plant-bacteria interactions. Previously, we reported that EPS is required for PsJN to survive from drought stress and colonize in pea (Pisum sativum) under drought condition. However, whether EPS is necessary for PsJN to promote plant growth remains unknown. In this work, a comparative study was conducted between the wild-type PsJN and its ∆bceQ mutant that lacks EPS to investigate the role of EPS in PsJN to confer drought-stress tolerance on pea plant. Our results showed that wild type PsJN, but not the ∆bceQ mutant, promoted pea seed germination and seedlings growth under drought stress. Pea plants inoculated with the wild type PsJN had a higher level of drought tolerance, as shown by a better vegetative growth and enhanced nodule formation, than plants inoculated with the ∆bceQ mutant. Moreover, EPS plays a role in the plant colonization under drought stress, because the ∆bceQ mutant was unable to colonize pea seeds and roots as effectively as the wild type PsJN. Further, expression of the EPS biosynthesis genes in the bceOVN operon of the wild type PsJN was induced by the presence of glucose. Overall, this study demonstrated that PsJN can promote pea plant growth under drought conditions and EPS is required for PsJN to confer beneficial effects to host plant.
Collapse
Affiliation(s)
| | - Qing Yan
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, United States
| |
Collapse
|
2
|
Xie X, Gan L, Wang C, He T. Salt-tolerant plant growth-promoting bacteria as a versatile tool for combating salt stress in crop plants. Arch Microbiol 2024; 206:341. [PMID: 38967784 DOI: 10.1007/s00203-024-04071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.
Collapse
Affiliation(s)
- Xue Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Chengyang Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
3
|
Fu B, Yan Q. Exopolysaccharide is required for motility, stress tolerance, and plant colonization by the endophytic bacterium Paraburkholderia phytofirmans PsJN. Front Microbiol 2023; 14:1218653. [PMID: 37670984 PMCID: PMC10475733 DOI: 10.3389/fmicb.2023.1218653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Paraburkholderia phytofirmans PsJN is an endophytic bacterium and has been shown to promote the growth and health of many different plants. Exopolysaccharide (EPS) plays important roles in plant-bacteria interaction and tolerance to environmental stresses. However, the function of EPS in PsJN and its interaction with plants remain largely unknown. In this study, a deletion mutation of bceQ gene, encoding a putative flippase for the EPS biosynthesis, was introduced in the genome of PsJN. The ΔbceQ mutant produced a significantly lower level of EPS than the wild type strain in culture media. Compared to the wild type PsJN, the ΔbceQ mutant was more sensitive to desiccation, UV damage, salt (NaCl) and iron (FeCl3) stresses, and bacteriophage infection. More importantly, the mutation of bceQ decreased the endophytic colonization of PsJN in camelina (Camelina sativa) and pea (Camelina sativa) under plant drought stress conditions. To the best of our knowledge, this is the first report that EPS production is required for the maximal colonization of an endophytic bacterium in the plant tissues under stress conditions.
Collapse
Affiliation(s)
| | - Qing Yan
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, United States
| |
Collapse
|
4
|
Marghoob MU, Nawaz A, Ahmad M, Waheed MQ, Khan MH, Imtiaz M, Islam EU, Imran A, Mubeen F. Assessment of halotolerant bacterial and fungal consortia for augmentation of wheat in saline soils. Front Microbiol 2023; 14:1207784. [PMID: 37455747 PMCID: PMC10347533 DOI: 10.3389/fmicb.2023.1207784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Adaptations of green technologies to counter abiotic stress, including salinity for crops like wheat by using halotolerant microbes, is a promising approach. The current study investigated 17 salt-affected agroecological zones from the Punjab and Sindh provinces of Pakistan to explore the potential of indigenous microbial flora, with their multiple biochemical characteristics in addition to plant growth promoting (PGP) traits, for enhanced wheat production in saline areas. Initially, 297 isolated pure bacterial colonies were screened for salt tolerance, biochemical, and PGP traits. Three bacterial strains belonging to Pantoea spp. and Erwinia rhaphontici with possession of multiple characteristics were selected for the development of the halotolerant bacterial consortium. Inoculation of two local wheat varieties, Faisalabad 2008 and Galaxy 2013, with the consortium for in vitro seed germination assay and sand microcosm experiments exhibited significant improvement of selected plant growth parameters like germination percentage and root structure. Two previously reported PGP fungal strains of Trichoderma harzianum and T. viridae were also used as fungal consortium separately for pot experiments and field trials. The pot experiments exhibited a positive correlation of consortia with metabolic viz. catalase, peroxidase, and proline and agronomical parameters including shoot length, dry weight, number of spikes, spike length, and 100 grain weight. To evaluate their performance under natural environmental conditions, field trials were conducted at three salt-affected sites. Agronomical attributes including days of flowering and maturity, flag leaf weight, length and width, shoot length, number of spikes, spike length, spike weight, number of seeds spike-1, 1,000 grain weight, and plot yield indicated the efficiency of these microbes to enhance wheat growth. Concisely, the bacterial consortium showed better performance and Faisalabad 2008 was a more resistant variety as compared to Galaxy 2013. Initial promising results indicate that further extensive research on indigenous microbes might lead to the development of Pakistan's first saline-specific biofertilizers and sustainable eco-friendly agriculture practices.
Collapse
Affiliation(s)
- Muhammad Usama Marghoob
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Aniqa Nawaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Muhammad Ahmad
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Muhammad Qandeel Waheed
- Plant Breeding and Genetic Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Hassaan Khan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Ejaz ul Islam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| |
Collapse
|
5
|
Gao J, Xie H. Daylily intercropping: Effects on soil nutrients, enzyme activities, and microbial community structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1107690. [PMID: 36890887 PMCID: PMC9986260 DOI: 10.3389/fpls.2023.1107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The daylily (Hemerocallis citrina Baroni)/other crop intercropping system can be a specific and efficient cropping pattern in a horticultural field. Intercropping systems contribute to the optimization of land use, fostering sustainable and efficient agriculture. In the present study, high-throughput sequencing was employed to explore the diversity in the root-soil microbial community in the intercropping of four daylily intercropping systems [watermelon (Citrullus lanatus)/daylily (WD), cabbage (Brassica pekinensis)/daylily (CD), kale (Brassica oleracea)/daylily (KD), watermelon/cabbage/kale/daylily (MI)], and determine the physicochemical traits and enzymatic activities of the soil. The results revealed that the contents of available potassium (2.03%-35.71%), available phosphorus (3.85%-62.56%), available nitrogen (12.90%-39.52%), and organic matter (19.08%-34.53%), and the urease (9.89%-31.02%) and sucrase (23.63%-50.60%) activities, and daylily yield (7.43%- 30.46%) in different intercropping soil systems were significantly higher compared to those in the daylily monocropping systems (CK). The bacterial Shannon index increased significantly in the CD and KD compared to the CK. In addition, the fungi Shannon index was also increased significantly in the MI, while the Shannon indices of the other intercropping modes were not significantly altered. Different intercropping systems also caused dramatic architectural and compositional alterations in the soil microbial community. A prominently higher relative richness of Bacteroidetes was noted in MI compared to that in CK, while Acidobacteria in WD and CD and Chloroflexi in WD were pronouncedly less abundant compared to those in CK. Furthermore, the association between soil bacteria taxa and soil characteristic parameters was stronger than that between fungi and soil. In conclusion, the present study demonstrated that the intercropping of daylily with other crops could significantly improve the nutrient levels of the soil and optimize the soil bacterial microflora composition and diversity.
Collapse
|
6
|
Stanek M, Kushwaha P, Murawska-Wlodarczyk K, Stefanowicz AM, Babst-Kostecka A. Quercus rubra invasion of temperate deciduous forest stands alters the structure and functions of the soil microbiome. GEODERMA 2023; 430:116328. [PMID: 37600960 PMCID: PMC10438910 DOI: 10.1016/j.geoderma.2023.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Invasive plants can modify the diversity and taxonomical structure of soil microbiomes. However, it is difficult to generalize the underlying factors as their influence often seems to depend on the complex plant-soil-microbial interactions. In this paper, we investigated how Quercus rubra impacts on the soil microbiome across two soil horizons in relation to native woodland. Five paired adjacent invaded vs native vegetation plots in a managed forest in southern Poland were investigated. Soil microbial communities were assessed along with soil enzyme activities and soil physicochemical parameters, separately for both organic and mineral horizons, as well as forest stand characteristics to explore plant-soil-microbe interactions. Although Q. rubra did not significantly affect pH, organic C, total N, available nutrients nor enzymatic activity, differences in soil abiotic properties (except C to N ratio) were primarily driven by soil depth for both vegetation types. Further, we found significant differences in soil microbiome under invasion in relation to native vegetation. Microbial richness and diversity were lower in both horizons of Q. rubra vs control plots. Moreover, Q. rubra increased relative abundance of unique amplicon sequence variants in both horizons and thereby significantly changed the structure of the core soil microbial communities, in comparison to the control plots. In addition, predicted microbial functional groups indicated a predominant soil depth effect in both vegetation plots with higher abundance of aerobic chemoheterotrophic bacteria and endophytic fungi in the organic horizon and greater abundance of methanotrophic and methylotrophic bacteria, and ectomycorrhizal fungi in the mineral horizon. Overall, our results indicate strong associations between Q. rubra invasion and changes in soil microbiome and associated functions, a finding that needs to be further investigated to predict modifications in ecosystem functioning caused by this invasive species.
Collapse
Affiliation(s)
- Małgorzata Stanek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Priyanka Kushwaha
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | | | - Anna M. Stefanowicz
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Rafique E, Mumtaz MZ, Ullah I, Rehman A, Qureshi KA, Kamran M, Rehman MU, Jaremko M, Alenezi MA. Potential of mineral-solubilizing bacteria for physiology and growth promotion of Chenopodium quinoa Willd. FRONTIERS IN PLANT SCIENCE 2022; 13:1004833. [PMID: 36299778 PMCID: PMC9589155 DOI: 10.3389/fpls.2022.1004833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Nutrient deficiency in wild plant species, including quinoa (Chenopodium quinoa Willd), can be overcome by applying mineral-solubilizing bacteria. Quinoa is a gluten-free, nutritious food crop with unique protein content. The present study aimed to characterize mineral-solubilizing rhizobacterial strains and to evaluate their plant growth-promoting potential in quinoa seedlings. More than sixty rhizobacterial strains were isolated from the quinoa rhizosphere and found eighteen strains to be strong phosphate solubilizers. Most of these bacterial strains showed zinc solubilization, and more than 80% of strains could solubilize manganese. The selected strains were identified as Bacillus altitudinis Cq-3, Pseudomonas flexibilis Cq-32, Bacillus pumilus Cq-35, Pseudomonas furukawaii Cq-40, Pontibacter lucknowensis Cq-48, and Ensifer sp. Cq-51 through 16S rRNA partial gene sequencing. Mainly, these strains showed the production of organic acids, including malic, gluconic, tartaric, ascorbic, lactic, and oxalic acids in insoluble phosphorus amended broth. All strains showed production of gluconic acids, while half of the strains could produce malic, ascorbic, lactic, and oxalic acids. These strains demonstrated the production of indole-3-acetic acid in the presence as well as in the absence of L-tryptophan. The bacterial strains also demonstrated their ability to promote growth and yield attributes, including shoot length, root length, leave numbers, root and shoot dry biomass, spike length, and spikes numbers of quinoa in pots and field trials. Increased physiological attributes, including relative humidity, quantum flux, diffusive resistance, and transpiration rate, were observed due to inoculation with mineral solubilizing bacterial strains under field conditions. P. lucknowensis Cq-48, followed by P. flexibilis Cq-32, and P. furukawaii Cq-40 showed promising results to promote growth, yield, and physiological attributes. The multi-traits characteristics and plant growth-promoting ability in the tested bacterial strains could provide an opportunity for formulating biofertilizers that could promote wild quinoa growth and physiology.
Collapse
Affiliation(s)
- Ejaz Rafique
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aneela Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
8
|
Vita F, Sabbatini L, Sillo F, Ghignone S, Vergine M, Guidi Nissim W, Fortunato S, Salzano AM, Scaloni A, Luvisi A, Balestrini R, De Bellis L, Mancuso S. Salt stress in olive tree shapes resident endophytic microbiota. FRONTIERS IN PLANT SCIENCE 2022; 13:992395. [PMID: 36247634 PMCID: PMC9556989 DOI: 10.3389/fpls.2022.992395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Olea europaea L. is a glycophyte representing one of the most important plants in the Mediterranean area, both from an economic and agricultural point of view. Its adaptability to different environmental conditions enables its cultivation in numerous agricultural scenarios, even on marginal areas, characterized by soils unsuitable for other crops. Salt stress represents one current major threats to crop production, including olive tree. In order to overcome this constraint, several cultivars have been evaluated over the years using biochemical and physiological methods to select the most suitable ones for cultivation in harsh environments. Thus the development of novel methodologies have provided useful tools for evaluating the adaptive capacity of cultivars, among which the evaluation of the plant-microbiota ratio, which is important for the maintenance of plant homeostasis. In the present study, four olive tree cultivars (two traditional and two for intensive cultivation) were subjected to saline stress using two concentrations of salt, 100 mM and 200 mM. The effects of stress on diverse cultivars were assessed by using biochemical analyses (i.e., proline, carotenoid and chlorophyll content), showing a cultivar-dependent response. Additionally, the olive tree response to stress was correlated with the leaf endophytic bacterial community. Results of the metabarcoding analyses showed a significant shift in the resident microbiome for plants subjected to moderate salt stress, which did not occur under extreme salt-stress conditions. In the whole, these results showed that the integration of stress markers and endophytic community represents a suitable approach to evaluate the adaptation of cultivars to environmental stresses.
Collapse
Affiliation(s)
- Federico Vita
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Leonardo Sabbatini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Stefano Ghignone
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Werther Guidi Nissim
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Anna Maria Salzano
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, National Research Council of Italy, Institute for the Animal Production System in the Mediterranean Environment (CNR-ISPAAM), Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, National Research Council of Italy, Institute for the Animal Production System in the Mediterranean Environment (CNR-ISPAAM), Portici, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
- Fondazione per il futuro delle città (FFC), Florence, Italy
| |
Collapse
|
9
|
Pal G, Saxena S, Kumar K, Verma A, Sahu PK, Pandey A, White JF, Verma SK. Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiol Res 2022; 265:127201. [PMID: 36167006 DOI: 10.1016/j.micres.2022.127201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
Abstract
The genus Burkholderia has proven potential in improving plant performance. In recent decades, a huge diversity of Burkholderia spp. have been reported with diverse capabilities of plant symbiosis which could be harnessed to enhance plant growth and development. Colonization of endophytic Burkholderia spp. have been extensively studied through techniques like advanced microscopy, fluorescent labelling, PCR based assays, etc., and found to be systemically distributed in plants. Thus, use of these biostimulant microbes holds the promise of improving quality and quantity of crops. The endophytic Burkholderia spp. have been found to support plant functions along with boosting nutrient availability, especially under stress. Endophytic Burkholderia spp. improve plant survival against deadly pathogens via mechanisms like competition, induced systemic resistance, and antibiosis. At the same time, they are reported to extend plant tolerance towards multiple abiotic stresses especially drought, salinity, and cold. Several attempts have been made to decipher the potential of Burkholderia spp. by genome mining, and these bacteria have been found to harbour genes for plant symbiosis and for providing multiple benefits to host plants. Characteristics specific for host recognition and nutrient acquisition were confirmed in endophytic Burkholderia by genomics and proteomics-based studies. This could pave the way for harnessing Burkholderia spp. for biotechnological applications like biotransformation, phytoremediation, insecticidal activity, antimicrobials, etc. All these make Burkholderia spp. a promising microbial agent in improving plant performance under multiple adversities. Thus, the present review highlights critical roles of endophytic Burkholderia spp., their colonization, alleviation of biotic and abiotic stresses, biotechnological applications and genomic insights.
Collapse
Affiliation(s)
- Gaurav Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kanchan Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Anand Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Pramod K Sahu
- National Bureau of Agriculturally Important Microorganisms, Mau, UP, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - James F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| | - Satish K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
10
|
Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022; 10:1528. [PMID: 36013946 PMCID: PMC9415082 DOI: 10.3390/microorganisms10081528] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Crops aimed at feeding an exponentially growing population are often exposed to a variety of harsh environmental factors. Although plants have evolved ways of adjusting their metabolism and some have also been engineered to tolerate stressful environments, there is still a shortage of food supply. An alternative approach is to explore the possibility of using rhizosphere microorganisms in the mitigation of abiotic stress and hopefully improve food production. Several studies have shown that rhizobacteria and mycorrhizae organisms can help improve stress tolerance by enhancing plant growth; stimulating the production of phytohormones, siderophores, and solubilizing phosphates; lowering ethylene levels; and upregulating the expression of dehydration response and antioxidant genes. This article shows the secretion of secondary metabolites as an additional mechanism employed by microorganisms against abiotic stress. The understanding of these mechanisms will help improve the efficacy of plant-growth-promoting microorganisms.
Collapse
Affiliation(s)
- Ntombikhona Appear Koza
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology Group, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
11
|
Bai YC, Li BX, Xu CY, Raza M, Wang Q, Wang QZ, Fu YN, Hu JY, Imoulan A, Hussain M, Xu YJ. Intercropping Walnut and Tea: Effects on Soil Nutrients, Enzyme Activity, and Microbial Communities. Front Microbiol 2022; 13:852342. [PMID: 35369467 PMCID: PMC8971985 DOI: 10.3389/fmicb.2022.852342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
The practice of intercropping, which involves growing more than one crop simultaneously during the same growing season, is becoming more important for increasing soil quality, land-use efficiency, and subsequently crop productivity. The present study examined changes in soil physicochemical properties, enzymatic activity, and microbial community composition when walnut (Juglans spp.) was intercropped with tea (Camellia sinensis L.) plants in a forest and compared with a walnut and tea monocropping system. The results showed that walnut-tea intercropping improved the soil nutrient profile and enzymatic activity. The soil available nitrogen (AN), available phosphorus (AP), available potassium (AK), organic matter (OM) content, and sucrase activity were significantly boosted in intercropped walnut and tea than in monocropping forests. The interaction between crops further increased bacterial and fungal diversity when compared to monoculture tea forests. Proteobacteria, Bacteroidetes, Firmicutes, Chlamydiae, Rozellomycota, and Zoopagomycota were found in greater abundance in an intercropping pattern than in monoculture walnut and tea forest plantations. The walnut-tea intercropping system also markedly impacted the abundance of several bacterial and fungal operational taxonomic units (OTUs), which were previously shown to support nutrient cycling, prevent diseases, and ameliorate abiotic stress. The results of this study suggest that intercropping walnut with tea increased host fitness and growth by positively influencing soil microbial populations.
Collapse
Affiliation(s)
- Yong-Chao Bai
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bao-Xin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Qi-Zhu Wang
- Center for Walnut Technology of Baokang County, Xiangyang, China
| | - Ya-Nan Fu
- Center for Walnut Technology of Baokang County, Xiangyang, China
| | - Jian-Yang Hu
- State Key Laboratory of the Discovery and Development of Novel Pesticides, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang, China
| | - Abdessamad Imoulan
- Department of Biology, Faculty of Science and Technics of Errachidia, Mouly Ismail University, Meknes, Morocco
| | - Muzammil Hussain
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
12
|
Guo J, Chen Y, Lu P, Liu M, Sun P, Zhang Z. Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117641. [PMID: 34426384 DOI: 10.1016/j.envpol.2021.117641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 05/11/2023]
Abstract
Salinity is a limiting factor in the growth of plants in coastal wetlands. The interaction of halophytes with salt-tolerant endophytes has been one of the major concerns in this area. However, the mechanism by which endophytes promote halophyte growth remains unclear. The growth and physiological responses of Suaeda salsa inoculated with endophytic bacteria (Sphingomonas prati and Sphingomonas zeicaulis) at 0 ‰ and 20 ‰ NaCl were studied. The results showed that Sphingomonas zeicaulis had stronger positive effects on the growth of Suaeda salsa under 0 ‰ NaCl, and Sphingomonas prati performed better under 20 ‰ NaCl. Sphingomonas prati inoculation increased the mean height, root length, fresh weight and dry weight by 45.43%, 9.91%, 82.00% and 102.25%, respectively, compared with the uninoculated treatment at 20 ‰ NaCl. Sphingomonas prati inoculation decreased MDA content by 23.78%, while the soluble sugar and soluble protein contents increased by 15.08% and 12.57%, respectively, compared to the control, at 20 ‰ NaCl. Increases in SOD and CAT in the Sphingomonas prati inoculation were 1.03 and 1.47-fold greater, respectively, than in the Sphingomonas zeicaulis inoculation, under 20 ‰ NaCl. Moreover, Sphingomonas prati and Sphingomonas zeicaulis had antagonistic interactions in Suaeda salsa according to the results of the "interaction equation" (most G values were negative). PCA, clustering analysis and the PLS model revealed two mechanisms for regulating plant salt tolerance by which Sphingomonas prati enhanced Suaeda salsa growth: (1) Sphingomonas prati improved intracellular osmotic metabolism and (2) Sphingomonas prati promoted the production of CAT in the antioxidant enzyme system and retained permeability. This study provides new insight into the comprehensive understanding and evaluation of endophytic bacteria as biological inoculants in plants under salt stress.
Collapse
Affiliation(s)
- Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China.
| | - Pengzhan Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Ming Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiming Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Can Bacterial Endophytes Be Used as a Promising Bio-Inoculant for the Mitigation of Salinity Stress in Crop Plants?-A Global Meta-Analysis of the Last Decade (2011-2020). Microorganisms 2021; 9:microorganisms9091861. [PMID: 34576756 PMCID: PMC8467090 DOI: 10.3390/microorganisms9091861] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Soil salinity is a major problem affecting crop production worldwide. Lately, there have been great research efforts in increasing the salt tolerance of plants through the inoculation of plant growth-promoting endophytic bacteria. However, their ability to promote plant growth under no-stress and salinity-stress conditions remains largely uncertain. Here, we carried out a global meta-analysis to quantify the plant growth-promoting effects (improvement of morphological attributes, photosynthetic capacity, antioxidative ability, and ion homeostasis) of endophytic bacteria in plants under no-stress and salinity-stress conditions. In addition, we elucidated the underlying mechanisms of growth promotion in salt-sensitive (SS) and salt-tolerant (ST) plants derived from the interaction with endophytic bacteria under no-stress and salinity-stress conditions. Specifically, this work encompassed 42 peer-reviewed articles, a total of 77 experiments, and 24 different bacterial genera. On average, endophytic bacterial inoculation increased morphological parameters. Moreover, the effect of endophytic bacteria on the total dry biomass, number of leaves, root length, shoot length, and germination rate was generally greater under salinity-stress conditions than no-stress conditions. On a physiological level, the relative better performance of the bacterial inoculants under the salinity-stress condition was associated with the increase in total chlorophyll and chlorophyll-b, as well as with the decrease of 1-aminocylopropane-1-carboxylate concentration. Moreover, under the salinity-stress condition, bacterial inoculation conferred a significantly higher increase in root K+ concentration and decrease in leaf Na+ concentration than under the no-stress condition. In SS plants, bacterial inoculation induced a higher increase in chlorophyll-b and superoxide dismutase activity, as well as a higher decrease in abscisic acid content, than in ST plants. Under salinity-stress, endophytic bacterial inoculation increased root K+ concentration in both SS and ST plants but decreased root Na+ concentration only in ST plants. Overall, this meta-analysis suggests that endophytic bacterial inoculation is beneficial under both no salinity-stress and salinity-stress conditions, but the magnitude of benefit is definitely higher under salinity-stress conditions and varies with the salt tolerance level of plants.
Collapse
|
14
|
Kong WL, Wang YH, Wu XQ. Enhanced Iron Uptake in Plants by Volatile Emissions of Rahnella aquatilis JZ-GX1. FRONTIERS IN PLANT SCIENCE 2021; 12:704000. [PMID: 34394158 PMCID: PMC8362888 DOI: 10.3389/fpls.2021.704000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Iron deficiency in soil has crucially restricted agricultural and forestry production. Volatile organic compounds (VOCs) produced by beneficial microorganisms have been proven to play an important role in inducing abiotic stress tolerance in plants. We investigated the effects of VOCs released by the rhizobacterium Rahnella aquatilis JZ-GX1 on the growth and root parameters of Arabidopsis thaliana under iron deficiency. The effect of the rhizobacterial VOCs on the gene expression in iron uptake and hormone signaling pathways were detected by RT-qPCR. Finally, the VOCs of the JZ-GX1 strain that could promote plant growth under iron deficiency stress were screened. The results showed that the JZ-GX1 strain could induce A. thaliana tolerance to iron deficiency stress by promoting the development of lateral roots and root hairs and increasing the activities of H+ ATPase and Fe3+ reductase. In addition, the AHA2, FRO2, and IRT1 genes of A. thaliana exposed to JZ-GX1-emitted VOCs were upregulated 25-, 1. 81-, and 1.35-fold, respectively, and expression of the abscisic acid (ABA) synthesis gene NCED3 was upregulated on both the 3rd and 5th days. Organic compounds were analyzed in the headspace of JZ-GX1 cultures, 2-undecanone and 3-methyl-1-butanol were found to promote Medicago sativa and A. thaliana growth under iron-limited conditions. These results demonstrated that the VOCs of R. aquatilis JZ-GX1 have good potential in promoting iron absorption in plants.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Relevance of Plant Growth Promoting Microorganisms and Their Derived Compounds, in the Face of Climate Change. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081179] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change has already affected food security in many parts of the world, and this situation will worsen if nothing is done to combat it. Unfortunately, agriculture is a meaningful driver of climate change, through greenhouse gas emissions from nitrogen-based fertilizer, methane from animals and animal manure, as well as deforestation to obtain more land for agriculture. Therefore, the global agricultural sector should minimize greenhouse gas emissions in order to slow climate change. The objective of this review is to point out the various ways plant growth promoting microorganisms (PGPM) can be used to enhance crop production amidst climate change challenges, and effects of climate change on more conventional challenges, such as: weeds, pests, pathogens, salinity, drought, etc. Current knowledge regarding microbial inoculant technology is discussed. Pros and cons of single inoculants, microbial consortia and microbial compounds are discussed. A range of microbes and microbe derived compounds that have been reported to enhance plant growth amidst a range of biotic and abiotic stresses, and microbe-based products that are already on the market as agroinputs, are a focus. This review will provide the reader with a clearer understanding of current trends in microbial inoculants and how they can be used to enhance crop production amidst climate change challenges.
Collapse
|