1
|
Li D, Li H, Feng H, Qi P, Wu Z. Unveiling kiwifruit TCP genes: evolution, functions, and expression insights. PLANT SIGNALING & BEHAVIOR 2024; 19:2338985. [PMID: 38597293 PMCID: PMC11008546 DOI: 10.1080/15592324.2024.2338985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
The TEOSINTE-BRANCHED1/CYCLOIDEA/PROLEFERATING-CELL-FACTORS (TCP) gene family is a plant-specific transcriptional factor family involved in leaf morphogenesis and senescence, lateral branching, hormone crosstalk, and stress responses. To date, a systematic study on the identification and characterization of the TCP gene family in kiwifruit has not been reported. Additionally, the function of kiwifruit TCPs in regulating kiwifruit responses to the ethylene treatment and bacterial canker disease pathogen (Pseudomonas syringae pv. actinidiae, Psa) has not been investigated. Here, we identified 40 and 26 TCP genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes, respectively. The synteny analysis of AcTCPs illustrated that whole-genome duplication accounted for the expansion of the TCP family in Ac. Phylogenetic, conserved domain, and selection pressure analysis indicated that TCP family genes in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in TCP gene number and distribution. Our results also suggested that protein structure and cis-element architecture in promoter regions of TCP genes have driven the function divergence of duplicated gene pairs. Three and four AcTCP genes significantly affected kiwifruit responses to the ethylene treatment and Psa invasion, respectively. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit TCPs.
Collapse
Affiliation(s)
- Donglin Li
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Haibo Li
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Huimin Feng
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Ping Qi
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Zhicheng Wu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| |
Collapse
|
2
|
Wen S, Hu Q, Wang J, Li H. Transcriptome analysis and functional validation reveal the novel role of LhCYCL in axillary bud development in hybrid Liriodendron. PLANT MOLECULAR BIOLOGY 2024; 114:55. [PMID: 38727895 DOI: 10.1007/s11103-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Shoot branching significantly influences yield and timber quality in woody plants, with hybrid Liriodendron being particularly valuable due to its rapid growth. However, understanding of the mechanisms governing shoot branching in hybrid Liriodendron remains limited. In this study, we systematically examined axillary bud development using morphological and anatomical approaches and selected four distinct developmental stages for an extensive transcriptome analysis. A total of 9,449 differentially expressed genes have been identified, many of which are involved in plant hormone signal transduction pathways. Additionally, we identified several transcription factors downregulated during early axillary bud development, including a noteworthy gene annotated as CYC-like from the TCP TF family, which emerged as a strong candidate for modulating axillary bud development. Quantitative real-time polymerase chain reaction results confirmed the highest expression levels of LhCYCL in hybrid Liriodendron axillary buds, while histochemical β-glucuronidase staining suggested its potential role in Arabidopsis thaliana leaf axil development. Ectopic expression of LhCYCL in A. thaliana led to an increase of branches and a decrease of plant height, accompanied by altered expression of genes involved in the plant hormone signaling pathways. This indicates the involvement of LhCYCL in regulating shoot branching through plant hormone signaling pathways. In summary, our results emphasize the pivotal role played by LhCYCL in shoot branching, offering insights into the function of the CYC-like gene and establishing a robust foundation for further investigations into the molecular mechanisms governing axillary bud development in hybrid Liriodendron.
Collapse
Affiliation(s)
- Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
3
|
Pan J, Ju Z, Ma X, Duan L, Jia Z. Genome-wide characterization of TCP family and their potential roles in abiotic stress resistance of oat ( Avena sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1382790. [PMID: 38654900 PMCID: PMC11036127 DOI: 10.3389/fpls.2024.1382790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
The TCP gene family members play multiple functions in plant growth and development and were named after the first three family members found in this family, TB1 (TEOSINTE BRANCHED 1), CYCLOIDEA (CYC), and Proliferating Cell Factor 1/2 (PCF1/2). Nitrogen (N) is a crucial element for forage yield; however, over-application of N fertilizer can increase agricultural production costs and environmental stress. Therefore, the discovery of low N tolerance genes is essential for the genetic improvement of superior oat germplasm and ecological protection. Oat (Avena sativa L.), is one of the world's staple grass forages, but no genome-wide analysis of TCP genes and their roles in low-nitrogen stress has been performed. This study identified the oat TCP gene family members using bioinformatics techniques. It analyzed their phylogeny, gene structure analysis, and expression patterns. The results showed that the AsTCP gene family includes 49 members, and most of the AsTCP-encoded proteins are neutral or acidic proteins; the phylogenetic tree classified the AsTCP gene family members into three subfamilies, and each subfamily has different conserved structural domains and functions. In addition, multiple cis-acting elements were detected in the promoter of the AsTCP genes, which were associated with abiotic stress, light response, and hormone response. The 49 AsTCP genes identified from oat were unevenly distributed on 18 oat chromosomes. The results of real-time quantitative polymerase chain reaction (qRT-PCR) showed that the AsTCP genes had different expression levels in various tissues under low nitrogen stress, which indicated that these genes (such as AsTCP01, AsTCP03, AsTCP22, and AsTCP38) played multiple roles in the growth and development of oat. In conclusion, this study analyzed the AsTCP gene family and their potential functions in low nitrogen stress at the genome-wide level, which lays a foundation for further analysis of the functions of AsTCP genes in oat and provides a theoretical basis for the exploration of excellent stress tolerance genes in oat. This study provides an essential basis for future in-depth studies of the TCP gene family in other oat genera and reveals new research ideas to improve gene utilization.
Collapse
Affiliation(s)
| | | | | | | | - Zhifeng Jia
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| |
Collapse
|
4
|
Jiang Y, Jiang D, Xia M, Gong M, Li H, Xing H, Zhu X, Li HL. Genome-Wide Identification and Expression Analysis of the TCP Gene Family Related to Developmental and Abiotic Stress in Ginger. PLANTS (BASEL, SWITZERLAND) 2023; 12:3389. [PMID: 37836129 PMCID: PMC10574737 DOI: 10.3390/plants12193389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Ginger (Zingiber officinale Roscoe), a widely consumed edible and medicinal plant, possesses significant nutritional and economic value. Abiotic stresses such as drought and low temperatures can impact the growth and development of ginger. The plant-specific transcription factor Teosinte branched1/cycloidea/proliferating cell factor (TCP) has progressively been identified in various plants for its role in regulating plant growth and development as well as conferring resistance to abiotic stresses. However, limited information on the TCP family is available in ginger. In this study, we identified 20 TCP members in the ginger genome, which were randomly distributed across 9 chromosomes. Based on phylogenetic analysis, these ginger TCP were classified into two subfamilies: Class I (PCF) and Class II (CIN, CYC/TB). The classification of the identified ginger TCPs was supported by a multi-species phylogenetic tree and motif structure analysis, suggesting that the amplification of the ginger TCP gene family occurred prior to the differentiation of angiosperms. The promoter region of ginger TCP genes was found to contain numerous cis-acting elements associated with plant growth, development, and abiotic stress response. Among these elements, the stress response element, anaerobic induction, and MYB binding site play a dominant role in drought responsiveness. Additionally, expression pattern analysis revealed variations in the expression of ginger TCP gene among different tissues and in response to diverse abiotic stresses (drought, low temperature, heat, and salt). Our research offers a thorough examination of TCP members within the ginger plant. This analysis greatly contributes to the understanding of how TCP genes regulate tissue development and response to stress, opening up new avenues for further exploration in this field.
Collapse
Affiliation(s)
- Yajun Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Dongzhu Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Maoqin Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Min Gong
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Hui Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Haitao Xing
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Xuedong Zhu
- Yudongnan Academy of Agricultural Sciences, Chongqing 408000, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| |
Collapse
|
5
|
Zhou H, Hwarari D, Ma H, Xu H, Yang L, Luo Y. Genomic survey of TCP transcription factors in plants: Phylogenomics, evolution and their biology. Front Genet 2022; 13:1060546. [PMID: 36437962 PMCID: PMC9682074 DOI: 10.3389/fgene.2022.1060546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The TEOSINTE BRANCHED1 (TBI1), CYCLOIDEA (CYC), and PROLIFERATING CELL NUCLEAR ANTIGEN FACTORS (PCF1 and PCF2) proteins truncated as TCP transcription factors carry conserved basic-helix-loop-helix (bHLH) structure, related to DNA binding functions. Evolutionary history of the TCP genes has shown their presence in early land plants. In this paper, we performed a comparative discussion on the current knowledge of the TCP Transcription Factors in lower and higher plants: their evolutionary history based on the phylogenetics of 849 TCP proteins from 37 plant species, duplication events, and biochemical roles in some of the plants species. Phylogenetics investigations confirmed the classification of TCP TFs into Class I (the PCF1/2), and Class II (the C- clade) factors; the Class II factors were further divided into the CIN- and CYC/TB1- subclade. A trace in the evolution of the TCP Factors revealed an absence of the CYC/TB1subclade in lower plants, and an independent evolution of the CYC/TB1subclade in both eudicot and monocot species. 54% of the total duplication events analyzed were biased towards the dispersed duplication, and we concluded that dispersed duplication events contributed to the expansion of the TCP gene family. Analysis in the TCP factors functional roles confirmed their involvement in various biochemical processes which mainly included promoting cell proliferation in leaves in Class I TCPs, and cell division during plant development in Class II TCP Factors. Apart from growth and development, the TCP Factors were also shown to regulate hormonal and stress response pathways. Although this paper does not exhaust the present knowledge of the TCP Transcription Factors, it provides a base for further exploration of the gene family.
Collapse
Affiliation(s)
- Haiying Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haibin Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
6
|
Li D, Tang X, Dong Y, Wang Y, Shi S, Li S, Liu Y, Ge H, Chen H. Comparative genomic investigation of TCP gene family in eggplant (Solanum melongena L.) and expression analysis under divergent treatments. PLANT CELL REPORTS 2022; 41:2213-2228. [PMID: 36001130 DOI: 10.1007/s00299-022-02918-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The putative TCP genes and their responses to abiotic stress in eggplant were comprehensively characterized, and SmTCP genes (Smechr0202855.1 and Smechr0602431.1) may be involved in anthocyanin synthesis. The Teosinte branched1/Cycloidea/Proliferating cell factors (TCPs), a family of plant-specific transcription factors, plays paramount roles in a plethora of developmental and physiological processes. We here systematically characterized putative TCP genes and their response to abiotic stress in eggplant. In total, 30 SmTCP genes were categorized into two subfamilies based on the classical TCP conserved domains. Chromosomal location analysis illustrated the random distribution of putative SmTCP genes along 12 eggplant chromosomes. Cis-acting elements and miRNA target prediction suggested that versatile and complicated regulatory mechanisms that control SmTCPs gene expression, and 3 miRNAs (miR319a, miR319b, and miR319c-3p) might act as major regulators targeting SmTCPs. Tissue expression profiles indicated divergent spatiotemporal expression patterns of SmTCPs. qRT-PCR assays demonstrated different expression profiles of SmTCP under 4 °C, drought and ABA treatment conditions, suggesting the possible participation of SmTCP genes in multiple signaling pathways. Furthermore, RNA-seq data of eggplant anthocyanin synthesis coupled with yeast one-hybrid and dual-luciferase assays suggested the involvement of SmTCP genes (Smechr0202855.1 and Smechr0602431.1) in the mediation of anthocyanin synthesis. Our study will facilitate further investigation on the putative functional characterization of eggplant TCP genes and lay a solid foundation for the in-depth study of the involvement of SmTCP genes in the regulation of anthocyanin synthesis.
Collapse
Affiliation(s)
- Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xin Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yanxiao Dong
- Shanghai Agricultural Science and Technology Service Center, Shanghai, 200335, China
| | - Yingying Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Suli Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
7
|
Nie YM, Han FX, Ma JJ, Chen X, Song YT, Niu SH, Wu HX. Genome-wide TCP transcription factors analysis provides insight into their new functions in seasonal and diurnal growth rhythm in Pinus tabuliformis. BMC PLANT BIOLOGY 2022; 22:167. [PMID: 35366809 PMCID: PMC8976390 DOI: 10.1186/s12870-022-03554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/23/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Pinus tabuliformis adapts to cold climate with dry winter in northern China, serving as important commercial tree species. The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTOR family(TCP)transcription factors were found to play a role in the circadian clock system in Arabidopsis. However, the role of TCP transcription factors in P. tabuliformis remains little understood. RESULTS In the present study, 43 TCP genes were identified from P. tabuliformis genome database. Based on the phylogeny tree and sequence similarity, the 43 TCP genes were classified into four groups. The motif results showed that different subfamilies indeed contained different motifs. Clade II genes contain motif 1, clade I genes contain motif 1, 8, 10 and clade III and IV contain more motifs, which is consistent with our grouping results. The structural analysis of PtTCP genes showed that most PtTCPs lacked introns. The distribution of clade I and clade II on the chromosome is relatively scattered, while clade III and clade IV is relatively concentrated. Co-expression network indicated that PtTCP2, PtTCP12, PtTCP36, PtTCP37, PtTCP38, PtTCP41 and PtTCP43 were co-expressed with clock genes in annual cycle and their annual cycle expression profiles both showed obvious seasonal oscillations. PtTCP2, PtTCP12, PtTCP37, PtTCP38, PtTCP40, PtTCP41, PtTCP42 and PtTCP43 were co-expressed with clock genes in diurnal cycle. Only the expression of PtTCP42 showed diurnal oscillation. CONCLUSIONS The TCP gene family, especially clade II, may play an important role in the regulation of the season and circadian rhythm of P. tabuliformis. In addition, the low temperature in winter may affect the diurnal oscillations.
Collapse
Affiliation(s)
- Yu-meng Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Fang-xu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Jing-jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Yi-tong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Harry X. Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, SE-901 83 Umeå, Sweden
| |
Collapse
|
8
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|