1
|
Check JC, Harkness RJ, Heger L, Chilvers MI, Mahaffee WF, Sakalidis ML, Miles TD. It's a Trap! Part II: An Approachable Guide to Constructing and Using Rotating-Arm Air Samplers. PLANT DISEASE 2024; 108:1923-1936. [PMID: 38537138 DOI: 10.1094/pdis-01-24-0131-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
An increasing number of researchers are looking to understand the factors affecting microbial dispersion but are often limited by the costs of commercially available air samplers. Some have reduced these costs by designing self-made versions; however, there are no published sampler designs, and there is limited information provided on the actual construction process. Lack of appropriate reference material limits the use of these self-made samplers by many researchers. This manuscript provides a guide to designing and constructing rotating-arm impaction air samplers by covering (i) environmental considerations, (ii) construction materials and equipment, (iii) the construction process, and (iv) air sampler deployment. Information regarding how to calculate rotational velocity, motor speed, and power supply requirements and to troubleshoot common issues is presented in an approachable format for individuals without experience in electronics or machining. Although many of the components discussed in this guide may change in their availability or be updated over time, this document is intended to serve as a "builder's guide" for future research into air sampling technology for phytopathology research.
Collapse
Affiliation(s)
- Jill C Check
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Rebecca J Harkness
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Lexi Heger
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Walter F Mahaffee
- U.S. Department of Agriculture, Agricultural Research Service, Horticulture Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
- Department of Industries and Regional Development, Perth, WA, Australia
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
2
|
Check JC, Harkness RJ, Heger L, Sakalidis ML, Chilvers MI, Mahaffee WF, Miles TD. It's a Trap! Part I: Exploring the Applications of Rotating-Arm Impaction Samplers in Plant Pathology. PLANT DISEASE 2024; 108:1910-1922. [PMID: 38411610 DOI: 10.1094/pdis-10-23-2096-fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Although improved knowledge on the movement of airborne plant pathogens is likely to benefit plant health management, generating this knowledge is often far more complicated than anticipated. This complexity is driven by the dynamic nature of environmental variables, diversity among pathosystems that are targeted, and the unique needs of each research group. When using a rotating-arm impaction sampler, particle collection is dependent on the pathogen, environment, research objectives, and limitations (monetary, environmental, or labor). Consequently, no design will result in 100% collection efficiency. Fortunately, it is likely that multiple approaches can succeed despite these constraints. Choices made during design and implementation of samplers can influence the results, and recognizing this influence is crucial for researchers. This article is for beginners in the art and science of using rotating-arm impaction samplers; it provides a foundation for designing a project, from planning the experiment to processing samples. We present a relatively nontechnical discussion of the factors influencing pathogen dispersal and how placement of the rotating-arm air samplers alters propagule capture. We include a discussion of applications of rotating-arm air samplers to demonstrate their versatility and potential in plant pathology research as well as their limitations.
Collapse
Affiliation(s)
- Jill C Check
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Rebecca J Harkness
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Lexi Heger
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
- Department of Industries and Regional Development, South Perth, WA 6151, Australia
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Walter F Mahaffee
- USDA Agricultural Research Service, Horticulture Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, U.S.A
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
3
|
Renfroe-Becton H, Kirk KR, Anco DJ. Measuring the Distance and Effects of Weather Conditions on the Dispersal of Nothopassalora personata. PHYTOPATHOLOGY 2024; 114:549-557. [PMID: 37856691 DOI: 10.1094/phyto-05-23-0169-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nothopassalora personata is one of the most economically severe pathogens of peanut in the United States. The fungus primarily relies on wind and rain for dispersal, which has been documented up to 10 m from an inoculum source. Spore traps have been used in a wide variety of pathosystems to study epidemiology, document detection, develop alert systems, and guide management programs. The objective of this study was to use spore traps and N. personata-specific qPCR primers to quantitatively evaluate dispersal of N. personata conidia at distances up to 70 m from an infected peanut field and to examine relationships between quantities captured and weather variables. Impaction spore samplers were placed at 4, 10, 30, 50, and 70 m from peanut fields at the Edisto Research and Education Center (six fields) and commercial peanut fields in Barnwell and Bamberg counties (one field each) from 2020 to 2022. Following initial detection, samples were collected at a 48-, 48-, 72-h interval until harvest. N. personata conidia were detected at all locations and distances, documenting dispersal up to 70 m from an inoculum source. This result is a reminder that volunteer management is crucial when rotating peanut in nearby fields. A model for predicting log spore quantities was developed using temperature and humidity variables. Temperature variables associated with observed sampling periods had a negative correlation with N. personata quantities, whereas parameters of relative humidity and mean windspeed were positively correlated.
Collapse
Affiliation(s)
- Hope Renfroe-Becton
- Department of Plant and Environmental Sciences, Clemson University-Edisto Research and Education Center, Blackville, SC 29817
| | - Kendall R Kirk
- Department of Plant and Environmental Sciences, Clemson University-Edisto Research and Education Center, Blackville, SC 29817
| | - Daniel J Anco
- Department of Plant and Environmental Sciences, Clemson University-Edisto Research and Education Center, Blackville, SC 29817
| |
Collapse
|
4
|
Hunter RMS, Manchester AD, Gremillion SK, Cantonwine EG. Use of image analysis to assess radial growth of Passalora arachidicola and Nothopassalora personata on solid media. Mycologia 2024; 116:213-225. [PMID: 38085557 DOI: 10.1080/00275514.2023.2280434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Despite significant research on early and late leaf spot diseases of peanut, in vitro study of the respective causal agents, Passalora arachidicola and Nothopassalora personata, has been limited due to cultural challenges that make growth of these fungi difficult to quantify with traditional methods. Studies were conducted to evaluate the practicality of image analysis to assess radial growth and tissue volume by correlating these assessments to dry mass. Image analysis was also used to estimate radial growth rates for these fungi over time. Tissue area and volume were significantly correlated to dry mass for P. arachidicola in two separate experiments, and for N. personata when medium had been removed from tissues prior to dry mass assessments. Tissue area densities were the same for P. arachidicola and Pseudocercospora smilacicola, evaluated as a nonstromatal cercosporoid comparison, whereas tissue volume densities were greater for P. archidicola and N. personata than P. smilacicola. A quadratic relationship was observed between radial growth and incubation time for all isolates evaluated. Growth rates of P. arachidicola isolates were 2 to 4 times faster than N. personata during the first week of incubation and slowed over time. Growth rates of NP18R, a phenotype variant of N. personata, increased after neighboring colonies met and was nearly 2.5 times faster than the fastest rates observed for P. arachidicola. These experiments demonstrate that when fungal tissues are observable, image analysis is a useful assessment tool for P. arachidicola and N. personata. Care should be taken to monitor fungal phenotypic changes in these species because phenotype degeneration can affect growth rates.
Collapse
Affiliation(s)
| | | | | | - Emily Gayle Cantonwine
- Department of Biology, Valdosta State University, 1500 N. Patterson Street, Valdosta, Georgia 31698
| |
Collapse
|
5
|
Hu X, Fu S, Li Y, Xu X, Hu X. Dynamics of Puccinia striiformis f. sp. tritici Urediniospores in Longnan, a Critical Oversummering Region of China. PLANT DISEASE 2023; 107:3155-3163. [PMID: 37163309 DOI: 10.1094/pdis-02-23-0237-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici Erikss. (Pst), is a devastating disease resulting in yield reduction. Because the temperature limits the overwintering and oversummering of Pst, it cannot complete the whole year cycle in most areas of China. Longnan, located in the southeast of Gansu Province, is one of the annual cycle areas of Pst, which can supply urediniospores in autumn to eastern wheat-growing areas in China. In this study, a TaqMan real-time quantitative PCR (TaqMan-qPCR) detection system for Pst urediniospores was established, and the detection limit was a single urediniospore. The dynamics of Pst urediniospores in Longnan were monitored by spore trapping and TaqMan-qPCR for 3 years. Meanwhile, the meteorological conditions including air temperature, relative humidity, and precipitation were recorded. Results showed that Pst urediniospores can be captured from March to December, and two peaks of urediniospore density appeared in May and June, respectively. The density of urediniospore is closely related to temperature and precipitation from March to June. In addition, we found that the density of Pst urediniospore had the peak value when the average air temperature was 10 to 21°C, and the relative humidity was 60 to 85% from May to June. The exponential model could describe the variation of Pst urediniospore density based on average temperature and precipitation from March to June. It is worth mentioning that the exponential model based on average temperature 7 days before spore capture has a great advantage in predicting the urediniospore density in the air. This study laid a foundation for establishment of a prediction model for wheat stripe rust based on the density of urediniospores and meteorological factors.
Collapse
Affiliation(s)
- Xuemin Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Songping Fu
- Tianshui Station of Plant Protection and Quarantine, Tianshui, Gansu 741020, China
| | - Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB, West Malling, Kent ME19 6BJ, U.K
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Zhang X, Bian F, Wang Y, Hu L, Yang N, Mao H. A Method for Capture and Detection of Crop Airborne Disease Spores Based on Microfluidic Chips and Micro Raman Spectroscopy. Foods 2022; 11:3462. [PMID: 36360075 PMCID: PMC9654373 DOI: 10.3390/foods11213462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 10/29/2023] Open
Abstract
Airborne crop diseases cause great losses to agricultural production and can affect people's physical health. Timely monitoring of the situation of airborne disease spores and effective prevention and control measures are particularly important. In this study, a two-stage separation and enrichment microfluidic chip with arcuate pretreatment channel was designed for the separation and enrichment of crop disease spores, which was combined with micro Raman for Raman fingerprinting of disease conidia and quasi identification. The chip was mainly composed of arc preprocessing and two separated enriched structures, and the designed chip was numerically simulated using COMSOL multiphysics5.5, with the best enrichment effect at W2/W1 = 1.6 and W4/W3 = 1.1. The spectra were preprocessed with standard normal variables (SNVs) to improve the signal-to-noise ratio, which was baseline corrected using an iterative polynomial fitting method to further improve spectral features. Raman spectra were dimensionally reduced using principal component analysis (PCA) and stability competitive adaptive weighting (SCARS), support vector machine (SVM) and back-propagation artificial neural network (BPANN) were employed to identify fungal spore species, and the best discrimination effect was achieved using the SCARS-SVM model with 94.31% discrimination accuracy. Thus, the microfluidic-chip- and micro-Raman-based methods for spore capture and identification of crop diseases have the potential to be precise, convenient, and low-cost methods for fungal spore detection.
Collapse
Affiliation(s)
- Xiaodong Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China
| | - Fei Bian
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China
| | - Yafei Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China
| | - Lian Hu
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| | - Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Douillet A, Laurent B, Beslay J, Massot M, Raynal M, Delmotte F. LAMP for in-field quantitative assessments of airborne grapevine downy mildew inoculum. J Appl Microbiol 2022; 133:3404-3412. [PMID: 35977551 DOI: 10.1111/jam.15762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
AIMS Cheap, rapid tools for measuring emissions of Plasmopara viticola sporangia directly in the field are required to protect grapevines efficiently and sustainably against downy mildew. To this end, we adapted an existing loop-mediated isothermal amplification (LAMP) protocol based on ITS2 sequences, coupled with a rotating-arm sampler and simple cell lysis, for the in-field measurement of airborne sporangia of P. viticola. METHODS AND RESULTS We estimated the sensitivity and specificity of the molecular reaction with an unpurified DNA template in controlled conditions, using the Droplet Digital PCR (ddPCR) as a reference. We show that the LAMP lower limit of quantification is 3.3 sporangia.m-3 air sampled. Cell lysis in KOH solution was less efficient than CTAB for DNA extraction, but the repeatability of the method was good. We tested this protocol directly in a plot at Chateau Dillon (Blanquefort, France) in which we monitored P. viticola sporangia concentrations from March to October 2020 (88 samples which revealed concentrations ranging from 0 to 243 sporangia.m-3 ). There was a significant quantitative correlation (R2 = 0.52) between ddPCR and LAMP results. CONCLUSION LAMP analysis of an unpurified DNA matrix is a simple and reliable method for in-field estimations of the concentration of airborne P. viticola sporangia. SIGNIFICANCE AND IMPACT OF STUDY This study constitutes a first step towards the development of a regional grapevine downy mildew monitoring network in the vineyards of Bordeaux.
Collapse
Affiliation(s)
- Antonin Douillet
- IFV, UMT SEVEN, Vinopôle, F-33290 Blanquefort, France.,INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140 Villenave d'Ornon, France
| | | | - Jessie Beslay
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140 Villenave d'Ornon, France
| | - Marie Massot
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
| | - Marc Raynal
- IFV, UMT SEVEN, Vinopôle, F-33290 Blanquefort, France
| | - François Delmotte
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140 Villenave d'Ornon, France
| |
Collapse
|
8
|
Wang H, Wagnon R, Moreno D, Timilsina S, Jones J, Vallad G, Turechek WW. A Long-Amplicon Viability-qPCR Test for Quantifying Living Pathogens that Cause Bacterial Spot in Tomato Seed. PLANT DISEASE 2022; 106:1474-1485. [PMID: 34894749 DOI: 10.1094/pdis-11-21-2509-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial spot is one of the most serious diseases of tomato. It is caused by four species of Xanthomonas: X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria. Contaminated or infected seed can be a major source of inoculum for this disease. The use of certified pathogen-free seed is one of the primary management practices to reduce the inoculum load in commercial production. Current seed testing protocols rely mainly on plating the seed extract and conventional PCR; however, the plating method cannot detect viable but nonculturable cells, and the conventional PCR assay has limited capability to differentiate DNA extracted from viable or dead bacterial cells. To improve the sensitivity and specificity of the tomato seed testing method for bacterial spot pathogens, a long-amplicon quantitative PCR (qPCR) assay coupled with propidium monoazide (PMA-qPCR) was developed to quantify selectively the four pathogenic Xanthomonas species in tomato seed. The optimized PMA-qPCR procedure was evaluated on pure bacterial suspensions, bacteria-spiked seed extracts, and seed extracts of inoculated and naturally infected seed. A crude DNA extraction protocol also was developed, and PMA-qPCR with crude bacterial DNA extracts resulted in accurate quantification of 104 to 108 CFU/ml of viable bacteria when mixed with dead cells at concentrations as high as 107 CFU/ml in the seed extracts. With DNA purified from concentrated seed extracts, the PMA-qPCR assay was able to detect DNA of the target pathogens in seed samples spiked with ≥75 CFU/ml (about 0.5 CFU/seed) of the viable pathogens. Latent class analysis of the inoculated and naturally infected seed samples showed that the PMA-qPCR assay had greater sensitivity than plating the seed extracts on the semiselective modified Tween Medium B and CKTM media for all four target species. Being much faster and more sensitive than dilution plating, the PMA-qPCR assay has potential to be used as a standalone tool or in combination with the plating method to improve tomato seed testing and advance the production of clean seed.
Collapse
Affiliation(s)
- Hehe Wang
- EDISTO Research and Education Center, Clemson University, Blackville, SC 29817
| | - Rieanna Wagnon
- EDISTO Research and Education Center, Clemson University, Blackville, SC 29817
| | - Daniela Moreno
- EDISTO Research and Education Center, Clemson University, Blackville, SC 29817
| | | | | | - Gary Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | |
Collapse
|
9
|
Arocha Rosete Y, To H, Evans M, White K, Saleh M, Trueman C, Tomecek J, Van Dyk D, Summerbell RC, Scott JA. Assessing the Use of DNA Detection Platforms Combined with Passive Wind-Powered Spore Traps for Early Surveillance of Potato and Tomato Late Blight in Canada. PLANT DISEASE 2021; 105:3610-3622. [PMID: 34743538 DOI: 10.1094/pdis-12-20-2695-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quantitative PCR (qPCR), loop-mediated amplification (LAMP), and lateral flow strip-based recombinase polymerase amplification (RPA-LFS) assays were assessed for early detection of Phytophthora infestans, the global causal agent of potato and tomato late blight, on passive wind-powered spore traps known as Spornados. Spore traps were deployed in potato and tomato fields during the 2018, 2019, and 2020 growing seasons in the provinces of Alberta, British Columbia, Manitoba, Prince Edward Island, and Ontario. All assays used DNA extracts from Spornado cassette membranes targeting the P. infestans nuclear ribosomal internal transcribed spacer. A total of 1,003 Spornado samples were qPCR tested, yielding 115 positive samples for P. infestans spores. In further assessment of these samples, LAMP detected P. infestans in 108 (93.9%) of 115 qPCR positive samples, and RPA-LFS detected it in 103 (89.6%). None of the assays showed cross-reaction with other Phytophthora species or pathogenic fungi known to infect potato and tomato. The qPCR detected ≤1 fg of P. infestans DNA, and LAMP and RPA-LFS amplified 10 fg in as little as 10 min. All assays detected P. infestans before the first report of late blight symptoms in commercial potato or tomato fields within each region or province. The combination of Spornado passive samplers with qPCR, LAMP, or RPA-LFS proved a valuable spore trapping system for early surveillance of late blight in potato and tomato. Both LAMP and RPA-LFS showed potential as alternative approaches to qPCR for in-field monitoring of P. infestans.
Collapse
Affiliation(s)
| | - Henry To
- Sporometrics Inc., Toronto, Ontario M6K 3J1, Canada
| | - Martin Evans
- Sporometrics Inc., Toronto, Ontario M6K 3J1, Canada
| | | | | | - Cheryl Trueman
- Department of Plant Agriculture, University of Guelph, Ridgetown, Ontario N0P 2C0, Canada
| | - Joseph Tomecek
- Department of Plant Agriculture, University of Guelph, Ridgetown, Ontario N0P 2C0, Canada
| | - Dennis Van Dyk
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada
| | - Richard C Summerbell
- Sporometrics Inc., Toronto, Ontario M6K 3J1, Canada
- Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 1R4, Canada
| | - James A Scott
- Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 1R4, Canada
| |
Collapse
|