1
|
Peng S, Duan C, Liu Q, Wang Q, Dai Y, Hao L, Li K. Biocontrol potential of Streptomyces sp. N2 against green and blue mold disease in postharvest navel orange and the action mechanism. Food Microbiol 2025; 125:104658. [PMID: 39448168 DOI: 10.1016/j.fm.2024.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The objective of this study was to provide a promising alternative to chemical fungicides for management of postharvest citrus decay, thereby promoting sustainable citrus fruit production. The postharvest decay of citrus fruit caused by Penicillium digitatum and Penicillium italicum results in substantial economic losses in citrus industry worldwide. With growing fungal resistance issues in P. digitatum and P. italicum, there is an urgent need for searching new methods to address above problems in a safe and environmentally friendly way. Streptomyces sp. N2, a new species from Streptomyces genus, exhibits significant antagonistic activity against Rhizoctonia solani. However, its biocontrol efficacy against postharvest decay caused by P. digitatum and P. italicum and its action mechanism remain unknown. In this study, Streptomyces sp. N2 was found to have significant potential in controlling green and blue mold diseases in postharvest navel oranges. Moreover, the action mechanism of Streptomyces sp. N2 against both P. italicum and P. digitatum was elucidated. On the one hand, Streptomyces sp. N2 stimulated fruit resistance to fight against invading fungal pathogens. It significantly reduced ROS content in navel orange upon the infection of mold disease, increased the production of defense-related enzymes including peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) and pathogenesis-related proteins of chitinase and β-1,3-glucanase. On the other hand, Streptomyces sp. N2 secreted bioactive substances to inhibit the growth of P. italicum and P. digitatum so as to prevent the development of postharvest decay. The bioactive substances secreted by Streptomyces sp. N2 significantly inhibited the spore germination and mycelial growth and led to microstructural damages to the cell wall and membrane, ROS burst, and mitochondrial dysfunction in both P. italicum and P. digitatum. This study provides a theoretical reference and application potential for the biological control of Streptomyces sp. N2 on green and blue mold diseases.
Collapse
Affiliation(s)
- Shuaiying Peng
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Chao Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| | - Qun Liu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Qian Wang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Yuqi Dai
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Liwen Hao
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Liu Q, Li X, Mao H, Zuo T, Zhang Y, Gou T, Chen J, Li L. The antagonistic activity of Streptomyces spiroverticillatus (No. HS1) against of poplar canker pathogen Botryosphaeria dothidea. BMC Microbiol 2024; 24:343. [PMID: 39271969 PMCID: PMC11401387 DOI: 10.1186/s12866-024-03494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Poplar canker caused by Botryosphaeria dothidea is one of the most severe plant disease of poplars worldwide. In our study, we aimed to investigate the modes of antagonism by fermentation broth supernatant (FBS) of Streptomyces spiroverticillatus HS1 against B. dothidea. RESULTS In vitro, the strain and FBS of S. spiroverticillatus HS1 significantly inhibited mycelial growth and biomass accumulation, and also disrupted the mycelium morphology of B. dothidea. On the 3rd day after treatment, the inhibition rates of colony growth and dry weight were 80.72% and 52.53%, respectively. In addition, FBS treatment damaged the plasma membrane of B. dothidea based on increased electrical conductivity in the culture medium, and malondialdehyde content of B. dothidea mycelia. Notably, the analysis of key enzymes in glycolysis pathway showed that the activity of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK), Ca2+Mg2+-ATPase were significantly increased after FBS treatment. But the glucose contents were significantly reduced, and pyruvate contents were significantly increased in B. dothidea after treatment with FBS. CONCLUSIONS The inhibitory mechanism of S. spiroverticillatus HS1 against B. dothidea was a complex process, which was associated with multiple levels of mycelial growth, cell membrane structure, material and energy metabolism. The FBS of S. spiroverticillatus HS1 could provide an alternative approach to biological control strategies against B. dothidea.
Collapse
Affiliation(s)
- Qingzhen Liu
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Xin Li
- Dalian Customs Technology Center, Dalian, 116001, China
| | - He Mao
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Tongtong Zuo
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Yang Zhang
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Tianbing Gou
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404010, China.
| | - Limei Li
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China.
| |
Collapse
|
3
|
Quach NT, Vu THN, Nguyen TTA, Le PC, Do HG, Nguyen TD, Thao PTH, Nguyen TTL, Chu HH, Phi QT. Metabolic and genomic analysis deciphering biocontrol potential of endophytic Streptomyces albus RC2 against crop pathogenic fungi. Braz J Microbiol 2023; 54:2617-2626. [PMID: 37792269 PMCID: PMC10689689 DOI: 10.1007/s42770-023-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Plant diseases caused by phytopathogenic fungi are one of the leading factors affecting crop loss. In the present study, sixty-one Streptomyces strains were screened for their antifungal activity against relevant wide range fungal pathogens prominent in Vietnam, namely Lasiodiplodia theobromae, Fusarium fujikuroi, and Scopulariopsis gossypii. Endophytic strain RC2 was the most effective strain in the mycelial inhibition of the tested fungi. Based on phenotypic characteristics, 16S rDNA gene analysis, and genomic analysis, strain RC2 belonged to Streptomyces albus. An ethyl acetate extract of S. albus RC2 led to the strong growth inhibition of S. gossypii Co1 and F. fujikuroi L3, but not L. theobromae N13. The crude extract also suppressed the spore germination of S. gossypii Co1 and F. fujikuroi L3 to 92.4 ± 3.2% and 87.4% ± 1.9%, respectively. In addition, the RC2 extract displayed potent and broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and the phytopathogenic bacteria Ralstonia solanacearum and Xanthomonas oryzae. The genome of strain RC2 was sequenced and revealed the presence of 15 biosynthetic gene clusters (BGCs) with similarities ≥ 45% to reference BGCs available in the antiSMASH database. The UPLC-HRMS analysis led to the identification of 8 other secondary metabolites, which have not been reported in S. albus. The present study indicated that RC2 could be a potent biocontrol agent against phytopathogenic fungi. Further attention should be paid to antifungal metabolites without functional annotation, development of product prototypes, and greenhouse experiments to demonstrate effective control of the plant diseases.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phuong Chi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phan Thi Hong Thao
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thanh Loi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
| |
Collapse
|
4
|
Long M, Wang Q, Li S, Liu C, Chen S, Yang Y, Ma H, Guo L, Fan G, Sun X, Ma G. Additive effect of the Streptomyces albus XJC2-1 and dimethomorph control pepper blight (Capsicum annuum L.). PEST MANAGEMENT SCIENCE 2023; 79:3871-3882. [PMID: 37254281 DOI: 10.1002/ps.7591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Pepper blight, caused by Phytophthora capsici, is a destructive soilborne disease, which poses a serious threat to pepper, Capsicum annuum L., production. Chemical fungicides, which mainly are used to control pepper blight, have a negative effect on the environment, rendering biological control as a promising alternative to maintain the balance between ecology and pest management. The purpose of this study was to screen the biocontrol bacteria, reduce the dosage of fungicides and increase the stability of biocontrol bacteria, and to find the mixing ratio of biocontrol bacteria and fungicides giving the best control effect. RESULTS We isolated actinomycetes strains from the soil surrounding the roots of healthy pepper plants amongst field-grown plants infected with P. capsici. Of these, Streptomyces albus XJC2-1 showed a strong inhibition effect on the growth of P. capsici, with an inhibition rate of ≤85%. XJC2-1 effectively inhibited the formation of sporangium and release of zoospores of P. capsici as well as directly destroyed its hyphae, to achieve the inhibitory effect. Transcriptomic profiling of pepper leaves, postirrigation of plants with the XJC2-1 fermentation broth, revealed upregulation of genes related to the photosynthesis pathway in pepper. Furthermore, XJC2-1 treatment improved the net photosynthetic rate and intercellular CO2 concentration, thereby improving the pepper plant's resistance to pathogens. The combination of XJC2-1 with the fungicide dimethomorph (8 μg mL-1 ) displayed strong synergism in inhibition of P. capsici infection, with a control efficiency as high as 75.16%, thus providing a basis for its application in the field. CONCLUSION Our study demonstrated that S. albus XJC2-1 inhibited Phytophthora pathogens from infecting pepper plants and enhanced plant host resistance. The combination of XJC2-1 and dimethomorph displayed a more stable and stronger control effect on pepper blight, showing potential for the future application of XJC2-1 in the field of biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meimei Long
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiuyue Wang
- Institute of Characteristic Crops, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shanshan Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Changyun Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Shan Chen
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Yanhui Yang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Haoyue Ma
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Lulu Guo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Guangjin Fan
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Guanhua Ma
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Gopalakrishnan S, Srinivas V, Chand U, Pratyusha S, Samineni S. Streptomyces consortia-mediated plant growth-promotion and yield performance in chickpea. 3 Biotech 2022; 12:318. [PMID: 36276473 PMCID: PMC9548453 DOI: 10.1007/s13205-022-03389-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 11/01/2022] Open
Abstract
Fourteen Streptomyces strains reported earlier as plant growth promoters (PGP) in chickpea were characterized for production of ammonia and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and solubilization of silica and zinc. The results showed that nine (CAI-17, CAI-78, KAI-26, CAI-21, CAI-26, MMA-32, CAI-140, CAI-155 and KAI-180) and six (CAI-17, CAI-21, CAI-26, CAI-13, CAI-93 and KAI-180) strains were found to produce ammonia and ACC deaminase, respectively, while one (KAI-180) and eight (CAI-17, CAI-21, CAI-26, MMA-32, CAI-13, CAI-85, CAI-93 and KAI-180) strains solubilized silica and zinc, respectively. The selected 14 Streptomyces strains were categorized into three consortia groups, consortium-1 (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), consortium-2 (CAI-21, CAI-26 and MMA-32) and consortium-3 (CAI-13, CAI-85, CAI-93, CAI-140, CAI-155 and KAI-180), based on their compatibility, and evaluated for their PGP traits in chickpea. The experiment was conducted under field conditions with two chickpea varieties over two years. The consortia-treated plots enhanced nodule number up to 23%, nodule weight up to 36%, root weight up to 27% and shoot weight up to 26% at 30 days after sowing and pod weight up to 35%, pod number up to 34% and grain yield up to 24% at harvest over the un-inoculated control plots. The harvested grains of consortia treatments were found to enhance crude protein up to 14%, crude fibre up to 17% and crude fat up to 16% over the grains from un-inoculated control. The rhizosphere soils of the consortia-treated plots enhanced total nitrogen up to 21%, organic carbon up to 8% and available phosphorous up to 16% over the un-inoculated control plots. This investigation demonstrated the potential use of the selected consortium of Streptomyces strains in the farmers' fields to improve the chickpea yields and soil fertility.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Vadlamudi Srinivas
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Uttam Chand
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Sambangi Pratyusha
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Srinivas Samineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| |
Collapse
|
7
|
Sambangi P, Gopalakrishnan S. Streptomyces-mediated synthesis of silver nanoparticles for enhanced growth, yield, and grain nutrients in chickpea. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Nano-biofertilizers on soil health, chemistry, and microbial community: benefits and risks. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00094-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Ahsan T, Liu H, Shan YH, Zhou T, Ahmed M, Li B, Wu Y. Identification and bio-control activity of Streptomyces strain (Koyanogensis) against Magnaporthe grisea. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2026816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Taswar Ahsan
- Department of Resources and Environmental Microbiology, College of Land and Environment, Shenyang Agricultural University, Shenyang, PR China
| | - He Liu
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, PR China
| | - Yu hang Shan
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, PR China
| | - Tao Zhou
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, PR China
| | - Maqsood Ahmed
- Department of Agriculture (Plant Protection) Pest Warning and Quality Control of Pesticides, Gujrat, Pakistan
| | - Bingxue Li
- Department of Resources and Environmental Microbiology, College of Land and Environment, Shenyang Agricultural University, Shenyang, PR China
| | - Yuanhua Wu
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, PR China
| |
Collapse
|