1
|
Barbero CA. Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)-A Critical Review. Polymers (Basel) 2023; 15:2240. [PMID: 37242814 PMCID: PMC10221099 DOI: 10.3390/polym15102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.
Collapse
Affiliation(s)
- Cesar A Barbero
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto 5800, Argentina
| |
Collapse
|
2
|
Jeong JY, Kim S, Baek E, You CY, Choi HJ. Suspension rheology of polyaniline coated manganese ferrite particles under electric/magnetic fields. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Munteanu L, Munteanu A, Sedlacik M, Kutalkova E, Kohl M, Kalendova A. Zinc Ferrite/Polyaniline Composite Particles: Pigment Applicable as Electro-Active Paint. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Effect of Nitrogen Atoms in the CNT Structure on the Gas Sensing Properties of PANI/CNT Composite. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein we report the gas-sensitive properties to ammonia (at 2–10 ppm) of individual nanostructures of a polyaniline/nitrogen-doped carbon nanotube composite with a nitrogen content of 0 at.% (uCNTs), 2 at.% (N-CNTs) and 4 at.% (N+-CNTs). Doping of nanotubes with nitrogen was carried out in order to both reduce the electron work function, to form a potential barrier at the “PANI-CNTs” interface, and reduce the contribution of nanotubes to the composite conductivity. An increase in the nitrogen content in CNTs leads to an increase in conductivity, a decrease in the work function, and the formation of defects in the outer walls of CNTs. It was found that the structural and chemical state of the polymer layer of all composites is the same. However, polymer morphology on nanotubes changes dramatically with increasing nitrogen content in CNTs: a thin smooth layer on uCNTs, a globular layer on N-CNTs, and a thick layer with a sheet-like structure on N+-CNTs. All composites showed the same response time (~20 s) and recovery time (~120 s). Ammonia sensitivity was 10.5 ± 0.2, 15.3 ± 0.5 and 2.2 ± 0.1 ppm−1 for PANI/uCNTs, PANI/N-CNTs and PANI/N+-CNTs, respectively. Based on the results obtained here, we came to the conclusion that the morphological features of the polymer layer on CNTs with different nitrogen content have a dominant effect on the gas reaction than the change in the electronic properties of the polymer at the interface “PANI-CNT”.
Collapse
|
5
|
Das HT, Dutta S, Beura R, Das N. Role of polyaniline in accomplishing a sustainable environment: recent trends in polyaniline for eradicating hazardous pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49598-49631. [PMID: 35596869 DOI: 10.1007/s11356-022-20916-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Attaining a sustainable environment has become a prime area of research interest, as it is an utmost necessity for a healthy life. Hence, ample studies have been carried out in adopting different processes and utilizing various materials to attain the goal. Herein, we present an exclusive discussion on one such material, i.e., polyaniline (PANI) and its derivatives. Being an intrinsic conducting type, it has grabbed more attention due to its durability in different doped/un-doped states, promptness in structural alteration, and solution processability. This review presents an exhaustive discussion on published reports showing utilization of PANI and its derivative in various forms like pure and composites, for cleaning the environment through adsorption, photodegradation, etc., and the various methods adopted in order to achieve an optimum operating condition to obtain the maximum outcome. In addition to these merits and demerits, various technical challenges faced with materials have been also presented. Therefore, it is expected that this piece of work, presenting the exhaustive discussion on PANI and; its derivatives would help to develop a better understanding of this excellent conducting polymer PANI and provide a state of art on the role of this material for attaining sustainable surroundings for the living beings.
Collapse
Affiliation(s)
- Himadri Tanaya Das
- Centre of Excellence for Advance Materials and Applications, Utkal University, Bhubaneswar, Odisha, India.
| | - Swapnamoy Dutta
- CEITEC-Central European Institute of Technology, Brno University of Technology, 61200, Brno, Czech Republic
| | - Rosalin Beura
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwaraka, New Delhi, India
| | - Nigamananda Das
- Centre of Excellence for Advance Materials and Applications, Utkal University, Bhubaneswar, Odisha, India.
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Kim HM, Jeong JY, Kang SH, Jin HJ, Choi HJ. Dual Electrorheological and Magnetorheological Behaviors of Poly(N-methyl aniline) Coated ZnFe 2O 4 Composite Particles. MATERIALS 2022; 15:ma15072677. [PMID: 35408004 PMCID: PMC9000578 DOI: 10.3390/ma15072677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Magnetic/conducting polymeric hybrid core-shell typed zinc ferrite (ZnFe2O4)/poly(N-methyl aniline) (PMA) particles were fabricated and adopted as electrorheological (ER) and magnetorheological (MR) fluids, and their rheological properties were examined. Solvo-thermally synthesized ZnFe2O4 was coated with a conducting PMA through chemical oxidation polymerization. The size, shape, and chemical composition of the final core-shell shaped particles were scrutinized by scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. The crystal faces of the particles before and after coating with PMA were analyzed by X-ray diffraction. The ZnFe2O4/PMA products were suspended in silicone oil to investigate the rheological response to electro- or magnetic stimuli using a rotating rheometer. The shear stresses were analyzed using the CCJ equation. The dynamic yield stress curve was suitable for the conductivity mechanism with a slope of 1.5. When magnetic fields of various intensities were applied, the flow curve was analyzed using the Hershel–Bulkley equation, and the yield stresses had a slope of 1.5. Optical microscopy further showed that the particles dispersed in insulating medium form chain structures under electric and magnetic fields. Via this core-shell fabrication process, not only spherical conducting particles were obtained but also their dual ER and MR responses were demonstrated for their wide potential applications.
Collapse
Affiliation(s)
| | | | | | - Hyoung-Joon Jin
- Correspondence: (H.-J.J.); (H.J.C.); Tel.: +82-32-860-7486 (H.J.C.)
| | - Hyoung Jin Choi
- Correspondence: (H.-J.J.); (H.J.C.); Tel.: +82-32-860-7486 (H.J.C.)
| |
Collapse
|
7
|
Gutierrez AM, Leniz FC, Wang X, Dziubla TD, Hilt JZ. Effect of Atom Transfer Radical Polymerization Reaction Time on PCB Binding Capacities of Styrene-CMA/QMA Core-Shell Iron Oxide Nanoparticles. MATERIALS SCIENCE & ENGINEERING. B, SOLID-STATE MATERIALS FOR ADVANCED TECHNOLOGY 2022; 277:115577. [PMID: 35250171 PMCID: PMC8896513 DOI: 10.1016/j.mseb.2021.115577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Water pollution continues to be one of the greatest challenges humankind faces worldwide. Increasing population growth, fast industrialization and modernization risk the worsening of water accessibility and quality in the coming years. Nanoadsorbents have steadily gained attention as remediation technologies that can meet stringent water quality demands. In this work, core-shell magnetic nanoparticles (MNPs) comprised of an iron oxide magnetic core and a styrene based polymer shell were synthesized via surface initiated atom transfer radical polymerization (SI-ATRP), and characterized them for their binding of polychlorinated biphenyls (PCBs), as model organic contaminants. Acrylated plant derived polyphenols, curcumin multiacrylate (CMA) and quercetin multiacrylate (QMA), and divinylbenzene (DVB) were incorporated into the polymeric shell to create high affinity binding sites for PCBs. The affinity of these novel materials for PCB 126 was evaluated and fitted to the nonlinear Langmuir model to determine binding affinities (KD). The KD values obtained for all the MNP systems showed higher binding affinities for PCB 126 that carbonaceous materials, like activated carbon and graphene oxide, the most widely used adsorption materials for water remediation today. The effect of increasing ATRP reaction time on the binding affinity of MNPs demonstrated the ability to tune polymer shell thickness by modifying the reaction extent and initial crosslinker concentrations in order to maximize pollutant binding. The enhancement in binding affinity and capacity for PCB 126 was demonstrated by the use of hydrophobic, aromatic rich molecules like styrene, CMA, QMA and DVB, within the polymeric shell provides more sites for π-π interactions to occur between the MNP surface and the PCB molecules. Overall, the high affinities for PCBs, as model organic pollutants, and magnetic capabilities of the core-shell MNPs synthesized provide a strong rationale for their application as nanoadsorbents in the environmental remediation of specific harmful contaminants.
Collapse
Affiliation(s)
- Angela M. Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Francisco C. Leniz
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Xinya Wang
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Thomas D. Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J. Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
8
|
Tang R, Zhou J, Li X, Yu Y, Ma S, Ou J. Facile "one-pot" preparation of phosphonate functional polythiophene based microsphere via Friedel-Crafts reaction for selective enrichment of phosphopeptides from milk. Anal Chim Acta 2022; 1190:339268. [PMID: 34857151 DOI: 10.1016/j.aca.2021.339268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
A novel kind of phosphonate functionalized polythiophene microsphere was designed and fabricated via Friedel-Crafts reaction. Diethyl (thiophen-2-ylmethyl) phosphonate (DTYP) and thiophene were co-polymerized by Fe (III) catalysis, without any surfactant, stabilizer and initiator. Functional phosphonate group was directly introduced into the microsphere without redundant modification steps. The adsorption amount of the as-synthesized microsphere, Ti-poly(Th-co-DTYP), was as high as 66.7 mg/g, which was higher than that of commercial Ti4+-IMAC microsphere (49.7 mg/g). The microsphere was explored on the specific capture of phosphopeptides from either tryptic digests of milk or HeLa cell protein. As a result, 88 of unique phosphopeptides mapping to 21 phosphoproteins were identified from 150 μg of milk tryptic digest after enrichment, and a total of 2534 unique phosphopeptides mapping to 1087 phosphoproteins was identified from HeLa cell. It is expected that such a robust and facile approach will be explored in other functional microspheres to be commercialized in the future.
Collapse
Affiliation(s)
- Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiahua Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Zhang G, Zhao X, Jin X, Zhao Z, Ren Y, Wang LM, Liu YD, Choi HJ. Ionic-liquid-modified TiO2 spheres and their enhanced electrorheological responses. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Dutta D, Dubey R, Borah JP, Puzari A. Smart pH-Responsive Polyaniline-Coated Hollow Polymethylmethacrylate Microspheres: A Potential pH Neutralizer for Water Purification Systems. ACS OMEGA 2021; 6:10095-10105. [PMID: 34056164 PMCID: PMC8153678 DOI: 10.1021/acsomega.1c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Smart materials with potential pH controllability are gaining widespread concern due to their versatile applicability in water purification systems. A study presented here demonstrates a successful synthesis of smart pH-responsive polyaniline (PANI)-coated hollow polymethylmethacrylate microspheres (PHPMs) using a combination of solvent evaporation and in situ coating techniques. The material was characterized by using conventional techniques. Images recorded by an optical microscope displayed clear evidence in support of the coating, which was further supported by the SEM images. Surface roughness due to the coating was distinct in the SEM images. The PANI coating has enabled the microsphere to effectively neutralize the pH of water in water purification systems, which is very important in tackling the excessive acidic or basic problem of water resources. This study introduces a simple, facile, and cost-effective synthetic route to develop polyaniline-coated hollow polymethylmethacrylate microspheres with high performance as a pH-responsive material for water purification. The low density of the material and relatively large surface area compared to conventionally used chemicals further enhance the application prospect of the material.
Collapse
Affiliation(s)
- Dhiraj Dutta
- National
Institute of Technology Nagaland, Chumukedima, Dimapur 797103, Nagaland, India
| | - Rama Dubey
- Defence
Research Laboratory, Post Bag No.
2, Tezpur 784001, Assam, India
| | - Jyoti Prasad Borah
- National
Institute of Technology Nagaland, Chumukedima, Dimapur 797103, Nagaland, India
| | - Amrit Puzari
- National
Institute of Technology Nagaland, Chumukedima, Dimapur 797103, Nagaland, India
| |
Collapse
|
11
|
Microfibrillated Cellulose Suspension and Its Electrorheology. Polymers (Basel) 2019; 11:polym11122119. [PMID: 31861094 PMCID: PMC6960754 DOI: 10.3390/polym11122119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/01/2023] Open
Abstract
Microfibrillated cellulose (MFC) particles were synthesized by a low-pressure alkaline delignification process, and their shape and chemical structure were investigated by SEM and Fourier transformation infrared spectroscopy, respectively. As a novel electrorheological (ER) material, the MFC particulate sample was suspended in insulating oil to fabricate an ER fluid. Its rheological properties—steady shear stress, shear viscosity, yield stress, and dynamic moduli—under electric field strength were characterized by a rotational rheometer. The MFC-based ER fluid demonstrated typical ER characteristics, in which the shear stresses followed the Cho–Choi–Jhon model well under electric field strength. In addition, the solid-like behavior of the ER fluid was investigated with the Schwarzl equation. The elevated value of both dynamic and elastic yield stresses at applied electric field strengths was well described using a power law model (~E1.5). The reversible and quick response of the ER fluid was also illustrated through the on–off test.
Collapse
|
12
|
Roosz N, Euvrard M, Lakard B, Viau L. A straightforward procedure for the synthesis of silica@polyaniline core-shell nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Dong YZ, Seo Y, Choi HJ. Recent development of electro-responsive smart electrorheological fluids. SOFT MATTER 2019; 15:3473-3486. [PMID: 30968927 DOI: 10.1039/c9sm00210c] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The characteristics of an electrorheological (ER) fluid, as a class of smart soft matter, can be actively and accurately tuned between a liquid- and a solid-like phase by the application of an electric field. ER materials used in ER fluids are electrically polarizable particles, which are attracting considerable attention in addition to further research. This perspective reports the latest ER materials along with their rheological understanding and provides a forward-looking summary of the potential future applications of ER technology.
Collapse
Affiliation(s)
- Yu Zhen Dong
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea.
| | | | | |
Collapse
|
14
|
Han H, Cho S. Ex Situ Fabrication of Polypyrrole-Coated Core-Shell Nanoparticles for High-Performance Coin Cell Supercapacitor. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E726. [PMID: 30223476 PMCID: PMC6164064 DOI: 10.3390/nano8090726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
Abstract
Silica-conducting polymer (SiO₂-CP) has the advantages of high electrical conductivity, structural stability, and the facile formation of thin-film. This work deals with the preparation and optimization of polypyrrole (PPy)-encapsulated silica nanoparticles (SiO₂ NPs) using an ex situ method. The SiO₂-PPy core-shell NPs prepared by the ex situ method are well dispersed in water and facilitate the mass production of thin-film electrodes with improved electrical and electrochemical performances using a simple solution process. As-prepared SiO₂-PPy core-shell NPs with different particle sizes were applied to electrode materials for two-electrode supercapacitors based on coin cell batteries. It was confirmed that the areal capacitance (73.1 mF/cm²), volumetric capacitance (243.5 F/cm³), and cycling stability (88.9% after 5000 cycles) of the coin cell employing the ex situ core-shell was superior to that of the conventional core-shell (4.2 mF/cm², 14.2 mF/cm³, and 82.2%). Considering these facts, the ex situ method provides a facile way to produce highly-conductive thin-film electrodes with enhanced electrical and electrochemical properties for the coin cell supercapacitor application.
Collapse
Affiliation(s)
- Hoseong Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| | - Sunghun Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|