1
|
Fratila DN, Virvescu DI, Luchian I, Hancianu M, Baciu ER, Butnaru O, Budala DG. Advances and Functional Integration of Hydrogel Composites as Drug Delivery Systems in Contemporary Dentistry. Gels 2024; 10:661. [PMID: 39451314 PMCID: PMC11507597 DOI: 10.3390/gels10100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often limited by mechanical fragility. Key areas of focus include the customization of hydrogel composites for biomedical applications, such as drug delivery systems, wound dressings, and tissue engineering scaffolds, where improved mechanical properties and bioactivity are critical. In dentistry, hydrogels are utilized for drug delivery systems targeting oral diseases, dental adhesives, and periodontal therapies due to their ability to adhere to the mucosa, provide localized treatment, and support tissue regeneration. Their unique properties, such as mucoadhesion, controlled drug release, and stimuli responsiveness, make them ideal candidates for treating oral conditions. This review highlights both experimental breakthroughs and theoretical insights into the structure-property relationships within hydrogel composites, aiming to guide future developments in the design and application of these multifunctional materials in dentistry. Ultimately, hydrogel composites represent a promising frontier for advancing materials science with far-reaching implications in healthcare, environmental technology, and beyond.
Collapse
Affiliation(s)
- Dragos Nicolae Fratila
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Ioan Virvescu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Jimenez J, Cilek JE, Schluep SM, Lundin JG. Designing thermoreversible gels for extended release of mosquito repellent. J Mater Chem B 2024; 12:9249-9257. [PMID: 39176566 DOI: 10.1039/d4tb01384k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Mosquito-borne diseases are responsible for 700 000 deaths annually. Current outdoor protective strategies primarily focus on direct skin application of commercial repellents (i.e., aerosol sprays or topical lotions) which are typically limited to efficacy times of ≤10 hours due to rapid evaporation and dermal absorption. Consequently, frequent reapplication for continuous protection can increase associated health hazards and cause noncompliance. This study utilizes Hansen solubility parameter modeling to design physical gels composed of insect-repelling N,N-diethyl-meta-toluamide (DEET) and modacrylic copolymer poly(acrylonitrile-co-vinyl chloride) (P(AN-VC)). The P(AN-VC)/DEET composites exhibit tunable and reversible sol-gel transition temperatures that can meet the thermomechanical stability demands of the intended application and permit facile transition to commercial melt processing techniques such as injection molding, filament spinning, or film casting. P(AN-VC)/DEET gel films demonstrate mosquito repellency for more than half a year-performing longer than any other known material to date-due to the high reservoir of repellent and its desorption hindrance from the polymer matrix. Therefore, P(AN-VC)/DEET gels hold significant potential for extended protection against mosquitos and other biting arthropods.
Collapse
Affiliation(s)
- Javier Jimenez
- US Naval Research Laboratory, Chemistry Division, Washington, DC, USA.
| | - James E Cilek
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL, USA
| | - Sierra M Schluep
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL, USA
| | - Jeffrey G Lundin
- US Naval Research Laboratory, Chemistry Division, Washington, DC, USA.
| |
Collapse
|
3
|
Harsányi A, Kardos A, Xavier P, Campbell RA, Varga I. A Novel Approach for the Synthesis of Responsive Core-Shell Nanogels with a Poly(N-Isopropylacrylamide) Core and a Controlled Polyamine Shell. Polymers (Basel) 2024; 16:2584. [PMID: 39339048 PMCID: PMC11435478 DOI: 10.3390/polym16182584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Microgel particles can play a key role, e.g., in drug delivery systems, tissue engineering, advanced (bio)sensors or (bio)catalysis. Amine-functionalized microgels are particularly interesting in many applications since they can provide pH responsiveness, chemical functionalities for, e.g., bioconjugation, unique binding characteristics for pollutants and interactions with cell surfaces. Since the incorporation of amine functionalities in controlled amounts with predefined architectures is still a challenge, here, we present a novel method for the synthesis of responsive core-shell nanogels (dh < 100 nm) with a poly(N-isopropylacrylamide) (pNIPAm) core and a polyamine shell. To achieve this goal, a surface-functionalized pNIPAm nanogel was first prepared in a semi-batch precipitation polymerization reaction. Surface functionalization was achieved by adding acrylic acid to the reaction mixture in the final stage of the precipitation polymerization. Under these conditions, the carboxyl functionalities were confined to the outer shell of the nanogel particles, preserving the core's temperature-responsive behavior and providing reactive functionalities on the nanogel surface. The polyamine shell was prepared by the chemical coupling of polyethyleneimine to the nanogel's carboxyl functionalities using a water-soluble carbodiimide (EDC) to facilitate the coupling reaction. The efficiency of the coupling was assessed by varying the EDC concentration and reaction temperature. The molecular weight of PEI was also varied in a wide range (Mw = 0.6 to 750 kDa), and we found that it had a profound effect on how many polyamine repeat units could be immobilized in the nanogel shell. The swelling and the electrophoretic mobility of the prepared core-shell nanogels were also studied as a function of pH and temperature, demonstrating the successful formation of the polyamine shell on the nanogel core and its effect on the nanogel characteristics. This study provides a general framework for the controlled synthesis of core-shell nanogels with tunable surface properties, which can be applied in many potential applications.
Collapse
Affiliation(s)
- Anna Harsányi
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
| | - Attila Kardos
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
- Department of Chemistry, University J. Selyeho, 945 01 Komárno, Slovakia
| | - Pinchu Xavier
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Richard A. Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
- Department of Chemistry, University J. Selyeho, 945 01 Komárno, Slovakia
| |
Collapse
|
4
|
Roussel S, Udabe J, Bin Sabri A, Calderón M, Donnelly R. Leveraging novel innovative thermoresponsive polymers in microneedles for targeted intradermal deposition. Int J Pharm 2024; 652:123847. [PMID: 38266945 DOI: 10.1016/j.ijpharm.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Microneedles have garnered considerable attention over the years as a versatile pharmaceutical platform that could be leveraged to deliver drugs into and across the skin. In the current work, poly (N-isopropylacrylamide) (PNIPAm) is synthesized and characterized as a novel material for the development of a physiologically responsive microneedle-based drug delivery system. Typically, this polymer transitions reversibly between a swell state at lower temperatures and a more hydrophobic state at higher temperatures, enabling precise drug release. This study demonstrates that dissolving microneedles patches made from PNIPAm, incorporating BIS-PNIPAm, a crosslinked polymer variant, exhibit enhanced mechanical properties, evident from a smaller height reduction in microneedle (∼10 %). Although microneedles using PNIPAm alone were achievable, it displayed poor mechanical strength, requiring the inclusion of additional polymeric excipients like PVA to enhance mechanical properties. In addition, the incorporation of a thermoresponsive polymer did not have a significant (p > 0.05) impact on the insertion properties of the needles as all formulations inserted to a similar depth of 500 µm into ex vivo skin. Furthering this, the needles were loaded with a model payload, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DID) and the deposition of the cargo was monitored via multiphoton microscopy that showed that a deposit is formed at a depth of ≈200 µm. Also, it was revealed that crosslinked-PNIPAm (Bis-PNIPAm) formulations exhibited notable skin accumulationof the dye only after 4 h, independent of the excipient matrix used. This phenomenon was absent in non-crosslinked PNIPAm formulations, indicating a deposit formation in Bis-PNIPAm microneedle formulation. Collectively, this proof-of-concept study has advanced our understanding on the possibility to use PNIPAm for dissolving microneedle fabrication which could be harnessed for the deposition of nanoparticles into the dermis, for extended drug release within the skin.
Collapse
Affiliation(s)
- Sabrina Roussel
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Quebec G1V 4G2, Canada; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jakes Udabe
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia - San Sebastián, Spain
| | - Akmal Bin Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, The University of Nottingham, NG7 2RD, UK
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia - San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ryan Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Lee HP, Davis R, Wang TC, Deo KA, Cai KX, Alge DL, Lele TP, Gaharwar AK. Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery. ACS APPLIED BIO MATERIALS 2023; 6:3683-3695. [PMID: 37584641 PMCID: PMC10863386 DOI: 10.1021/acsabm.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
Granular hydrogels have recently emerged as promising biomaterials for tissue engineering and 3D-printing applications, addressing the limitations of bulk hydrogels while exhibiting desirable properties such as injectability and high porosity. However, their structural stability can be improved with post-injection interparticle cross-linking. In this study, we developed granular hydrogels with interparticle cross-linking through reversible and dynamic covalent bonds. We fragmented photo-cross-linked bulk hydrogels to produce aldehyde or hydrazide-functionalized microgels using chondroitin sulfate. Mixing these microgels facilitated interparticle cross-linking through reversible hydrazone bonds, providing shear-thinning and self-healing properties for injectability and 3D printing. The resulting granular hydrogels displayed high mechanical stability without the need for secondary cross-linking. Furthermore, the porosity and sustained release of growth factors from these hydrogels synergistically enhanced cell recruitment. Our study highlights the potential of reversible interparticle cross-linking for designing injectable and 3D printable therapeutic delivery scaffolds using granular hydrogels. Overall, our study highlights the potential of reversible interparticle cross-linking to improve the structural stability of granular hydrogels, making them an effective biomaterial for use in tissue engineering and 3D-printing applications.
Collapse
Affiliation(s)
- Hung-Pang Lee
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Ryan Davis
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Ting-Ching Wang
- Chemical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Kaivalya A. Deo
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Kathy Xiao Cai
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Daniel L. Alge
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Material
Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Tanmay P. Lele
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Chemical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Akhilesh K. Gaharwar
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Material
Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics & Genomics, Texas A&M University, College Station, Texas 77843, United States
- Center
for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
7
|
Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, Zhu Q, Loh XJ. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem Asian J 2022; 17:e202200608. [PMID: 35866560 DOI: 10.1002/asia.202200608] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Indexed: 11/09/2022]
Abstract
The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Pin Jin Ong
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Songlin Liu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | | | - Ady Suwardi
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, 2 Fusionopolis Way, 138634, Singapore, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| |
Collapse
|
8
|
Gao XD, Zhang XB, Zhang RH, Yu DC, Chen XY, Hu YC, Chen L, Zhou HY. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J Mater Chem B 2022; 10:5696-5722. [PMID: 35852563 DOI: 10.1039/d2tb01066f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our research on the physiopathology of intervertebral disc degeneration (IVD degeneration, IVDD) has advanced and tissue engineering has rapidly evolved, cell-, biomolecule- and nucleic acid-based hydrogel grafting strategies have been widely investigated for their ability to overcome the harsh microenvironment of IVDD. However, such single delivery systems suffer from excessive external dimensions, difficult performance control, the need for surgical implantation, and difficulty in eliminating degradation products. Stimulus-responsive composite hydrogels have good biocompatibility and controllable mechanical properties and can undergo solution-gel phase transition under certain conditions. Their combination with ready-to-use particles to form a multiscale delivery system may be a breakthrough for regenerative IVD strategies. In this paper, we focus on summarizing the progress of research on the stimulus response mechanisms of regenerative IVD-related biomaterials and their design as macro-, micro- and nanoparticles. Finally, we discuss multi-scale delivery systems as bioinks for bio-3D printing technology for customizing personalized artificial IVDs, which promises to take IVD regenerative strategies to new heights.
Collapse
Affiliation(s)
- Xi-Dan Gao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao tong University, Shaanxi 710000, P. R. China.
| | - Rui-Hao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - De-Chen Yu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiang-Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Yi-Cun Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Lang Chen
- Department of Gastrointestinal Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China
| | - Hai-Yu Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
9
|
Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Additive Soft Matter Design by UV-Induced Polymer Hydrogel Inter-Crosslinking. Gels 2022; 8:gels8020117. [PMID: 35200499 PMCID: PMC8871859 DOI: 10.3390/gels8020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, stimuli-responsive hydrogels have gained tremendous interest in designing complex smart 4D materials for applications ranging from biomedicine to soft electronics that can change their properties on demand over time. However, at present, a hydrogel’s response is often induced by merely a single stimulus, restricting its broader applicability. The controlled hierarchical assembly of various hydrogel building blocks, each with a tailored set of mechanical and physicochemical properties as well as programmed stimulus response, may potentially enable the design and fabrication of multi-responsive polymer parts that process complex operations, like signal routing dependent on different stimuli. Since inter-connection stability of such building blocks directly accompanies the transmission of information across building blocks and is as important as the building property itself to create complex 4D materials, we provide a study on the utility of an inter-crosslinking mechanism based on UV-induced 2,3-dimethylmaleimide (DMMI) dimerization to inter-connect acrylamide-based and N-isopropylacrylamide-based millimeter-sized cubic building blocks, respectively. The resulting dual-crosslinked assemblies are freestanding and stable against contraction–expansion cycles in solution. In addition, the approach is also applicable for connecting microfluidically fabricated, micrometer-sized hydrogel spheres, with the resulting assemblies being processable and mechanical stable, likewise resisting contraction–expansion in different solvents, for instance.
Collapse
|
11
|
Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between Structure and Rheology of Hydrogels for Various Applications. Gels 2021; 7:255. [PMID: 34940315 PMCID: PMC8700820 DOI: 10.3390/gels7040255] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hydrogels have gained a lot of attention with their widespread use in different industrial applications. The versatility in the synthesis and the nature of the precursor reactants allow for a varying range of hydrogels with different mechanical and rheological properties. Understanding of the rheological behavior and the relationship between the chemical structure and the resulting properties is crucial, and is the focus of this review. Specifically, we include detailed discussion on the correlation between the rheological characteristics of hydrogels and their possible applications. Different rheological tests such as time, temperature and frequency sweep, among others, are described and the results of those tests are reported. The most prevalent applications of hydrogels are also discussed.
Collapse
Affiliation(s)
| | | | | | - Ranjita K. Bose
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (G.S.); (Z.N.); (F.P.)
| |
Collapse
|
12
|
Xu F, Lam A, Pan Z, Randhawa G, Lamb M, Sheardown H, Hoare T. Fast Thermoresponsive Poly(oligoethylene glycol methacrylate) (POEGMA)-Based Nanostructured Hydrogels for Reversible Tuning of Cell Interactions. ACS Biomater Sci Eng 2021; 7:4258-4268. [PMID: 33570906 DOI: 10.1021/acsbiomaterials.0c01552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactive electrospinning is demonstrated as a viable method to create fast-responsive and degradable macroporous thermoresponsive hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA). Hydrazide- and aldehyde-functionalized POEGMA precursor polymers were coelectrospun to create hydrazone cross-linked nanostructured hydrogels in a single processing step that avoids the need for porogens, phase separation-driving additives, or scaffold postprocessing. The resulting nanostructured hydrogels can respond reversibly and repeatedly to changes in external temperature within seconds, in contrast to the minutes-to-hours response time observed with bulk hydrogels. Furthermore, nearly quantitative cell delamination can be achieved within 2 min of incubation at 4 °C, resulting in the recovery of as many or more (as well as more proliferatively active) cells from the substrate relative to the conventional trypsinization protocol. The combined macroporosity, nanoscale feature size, and interfacial switching potential of these nanostructured hydrogels thus offer promise for manipulating cell-hydrogel interactions as well as other applications in which rapid responses to external stimuli are desirable.
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Angus Lam
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Zhicheng Pan
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gurpreet Randhawa
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Makenzie Lamb
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
13
|
Li G, Varga I, Kardos A, Dobryden I, Claesson PM. Temperature-Dependent Nanomechanical Properties of Adsorbed Poly-NIPAm Microgel Particles Immersed in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1902-1912. [PMID: 33502872 PMCID: PMC7879429 DOI: 10.1021/acs.langmuir.0c03386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Indexed: 05/24/2023]
Abstract
The temperature dependence of nanomechanical properties of adsorbed poly-NIPAm microgel particles prepared by a semibatch polymerization process was investigated in an aqueous environment via indentation-based atomic force microscopy (AFM) methods. Poly-NIPAm microgel particles prepared by the classical batch process were also characterized for comparison. The local mechanical properties were measured between 26 and 35 °C, i.e., in the temperature range of the volume transition. Two different AFM tips with different shapes and end radii were utilized. The nanomechanical properties measured by the two kinds of tips showed a similar temperature dependence of the nanomechanical properties, but the actual values were found to depend on the size of the tip. The results suggest that the semibatch synthesis process results in the formation of more homogeneous microgel particles than the classical batch method. The methodological approach reported in this work is generally applicable to soft surface characterization in situ.
Collapse
Affiliation(s)
- Gen Li
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Imre Varga
- Institute
of Chemistry, Eötvös Loránd
University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
- Department
of Chemistry, University J. Selyeho, 945 01 Komarno, Slovakia
| | - Attila Kardos
- Institute
of Chemistry, Eötvös Loránd
University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
- Department
of Chemistry, University J. Selyeho, 945 01 Komarno, Slovakia
| | - Illia Dobryden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Department
of Engineering Sciences and Mathematics, Division of Materials Science, Luleå University of Technology, 97187 Luleå, Sweden
| | - Per M. Claesson
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division
of Bioscience and Materials, RISE Research
Institutes of Sweden, Box 5607, SE 114 86 Stockholm, Sweden
| |
Collapse
|
14
|
Vishnevetskii DV, Adamyan AN, Ivanova AI, Khizhnyak SD, Pakhomov PM. Influence of polyvinyl alcohol on the rheology and morphology of an l-cysteine-AgNO3 supramolecular system. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2921-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Synthesis, characterization and in vitro cytotoxicity studies of poly-N-isopropyl acrylamide gel nanoparticles and films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111507. [PMID: 33255065 DOI: 10.1016/j.msec.2020.111507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Abstract
In this work, we show synthesis that leads to thermoreponsive poly-N-isopropyl acrylamide (pNIPAM) nanogels with sizes below 100 nm, irrespectively of the surfactant to crosslinker ratio. We also show that in many environments the temperature induced pNIPAM collapse at Lower Critical Solution Temperature (LCST) of 32.5 °C is accompanied by gel nanoparticles' aggregation. Thus, the proper information on the nanoparticle (NP) structure and deswelling can be obtained only if the routinely measured hydrodynamic radius is supplemented by information on the molecular weight, which can be obtained from the intensity of scattered light. We measured the dynamics and reversibility of the deswelling and subsequent aggregation processes. Furthermore, we show that the highly concentrated pNIPAM gel NPs reversibly form bulk hydrogel networks of varied interconnected porous structure. We show, that in case of drying pNIPAM gel NPs above the LCST, it is possible to obtain films with 20-fold increase in storage modulus (G') compared to hydrogel networks measured at room temperature. They exhibit temperature hysteresis behavior around LCST of 32.5 °C similar to pNIPAM films. Finally, we show that these hydrogel films, lead to extended proliferation of cells across three different types: fibroblast, endothelial and cancer cells. Additionally, none of the films exhibited any cytotoxic effects. Our study brings new insights into physicochemical characterization of pNIPAM gel NPs and networks behavior in realistic conditions of in vitro measurements, especially by means of dynamic light scattering as well as final unique properties of both gel NPs and formed porous films for possible tissue engineering applications.
Collapse
|
16
|
Es Sayed J, Lorthioir C, Banet P, Perrin P, Sanson N. Reversible Assembly of Microgels by Metallo‐Supramolecular Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julien Es Sayed
- Soft Matter Sciences and Engineering ESPCI PSL University Sorbonne Université CNRS 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Cédric Lorthioir
- Laboratoire de Chimie de la Matière Condensée de Paris Sorbonne Université CNRS Collège de France 4 Place Jussieu 75005 Paris Cedex 05 France
| | - Philippe Banet
- Laboratoire de Physicochimie des Polymères et des Interfaces CY Cergy Paris Université 5 Mail Gay Lussac, Site de Neuville 95000 Cergy Pontoise Cedex France
| | - Patrick Perrin
- Soft Matter Sciences and Engineering ESPCI PSL University Sorbonne Université CNRS 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Nicolas Sanson
- Soft Matter Sciences and Engineering ESPCI PSL University Sorbonne Université CNRS 10 rue Vauquelin 75231 Paris Cedex 05 France
| |
Collapse
|
17
|
Es Sayed J, Lorthioir C, Banet P, Perrin P, Sanson N. Reversible Assembly of Microgels by Metallo‐Supramolecular Chemistry. Angew Chem Int Ed Engl 2020; 59:7042-7048. [DOI: 10.1002/anie.201915737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/18/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Julien Es Sayed
- Soft Matter Sciences and Engineering ESPCI PSL University Sorbonne Université CNRS 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Cédric Lorthioir
- Laboratoire de Chimie de la Matière Condensée de Paris Sorbonne Université CNRS Collège de France 4 Place Jussieu 75005 Paris Cedex 05 France
| | - Philippe Banet
- Laboratoire de Physicochimie des Polymères et des Interfaces CY Cergy Paris Université 5 Mail Gay Lussac, Site de Neuville 95000 Cergy Pontoise Cedex France
| | - Patrick Perrin
- Soft Matter Sciences and Engineering ESPCI PSL University Sorbonne Université CNRS 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Nicolas Sanson
- Soft Matter Sciences and Engineering ESPCI PSL University Sorbonne Université CNRS 10 rue Vauquelin 75231 Paris Cedex 05 France
| |
Collapse
|
18
|
Varga I, Kardos A, Borsos A, Gilányi T. Effect of internal charge distribution on the electrophoretic mobility of poly(N-isopropylacrylamide) based core-shell microgel particles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Molecular dynamics, viscoelastic properties and physical stability studies of a new amorphous dihydropyridine derivative with T-type calcium channel blocking activity. Eur J Pharm Sci 2020; 141:105083. [DOI: 10.1016/j.ejps.2019.105083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/21/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023]
|
20
|
Liu D, Miao Z, Wu C, He F, Ren P, Bai S, Jiang X, Gao Y. Isothermal kinase-triggered supramolecular assemblies as drug sensitizers. Chem Sci 2019; 11:1132-1139. [PMID: 34084370 PMCID: PMC8145944 DOI: 10.1039/c9sc04317a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein kinases, the main regulators of a vast map of cellular processes, are the most attractive targets in drug discovery. Despite a few successful examples of protein kinase inhibitors, the drug discovery strategy of downregulating protein kinase activity has been quite limited and often fails even in animal models. Here, we utilize protein kinase A (PKA) activity to design PKA-triggered supramolecular assemblies with anticancer activities. Grafting a suitable peptide to PNIPAM raises the critical temperature of the LCST polymer above body temperature. Interestingly, the corresponding phosphorylated polymer has a critical temperature below body temperature, making this peptide-appended PNIPAM a suitable polymer for the PKA-triggered supramolecular assembly process. PKA-triggered assembly occurs selectively in PKA-upregulated MCF-7 cells, which disturbs the cytoskeleton and sensitizes cancer cells against doxorubicin. The chemosensitization is also observed in vivo to identify effective tumor inhibitors with satisfactory biocompatibility. Overall, this phosphorylation-induced (in principle, PKA-catalyzed) supramolecular assembly opens up a promising chemotherapy strategy for combating kinase-upregulated cancer. A nonapeptide grafted LCST polymer undergoes enzymatic phosphorylation to assemble, which selectively disrupts PKA overexpressing cancer cells via kinetics targeting.![]()
Collapse
Affiliation(s)
- Dongdong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China .,Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhe Miao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Chengling Wu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Fangfei He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Peng Ren
- Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shuo Bai
- Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China .,Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 P. R. China.,Department of Biomedical Engineering, Southern University of Science & Technology Shenzhen 518055 Guangdong P. R. China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China .,Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
21
|
How small can poly(N-isopropylacrylamide) nanogels be prepared by controlling the size with surfactant? J Colloid Interface Sci 2019; 557:793-806. [DOI: 10.1016/j.jcis.2019.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022]
|
22
|
Qiu X, Wang X, Hou S, Zhang J, Zhou J, Tan Y. Tunable Fluorescence-Responsive Double Hydrophilic Block Polymers Induced by the Formation of Pseudopolyrotaxanes with Cucurbit[7]Uril. Polymers (Basel) 2019; 11:E1470. [PMID: 31505799 PMCID: PMC6780542 DOI: 10.3390/polym11091470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
There is an urgent need for new strategies that allow the simultaneous detection and control of drug delivery. By making use of supramolecular host-guest interactions, a kind of pseudopolyrotaxanes, as a visualizable nanoscale drug carrier has been constructed by self-assembly of cucurbit[7]uril (CB[7]) with methoxy poly(ethylene glycol)-block-quaternized poly(4-vinyl pyridine) (mPEG-b-QP4VP) using 4-(chloromethyl)benzonitrile. Simple addition of CB[7] into an aqueous solution of mPEG-b-QP4VP resulted in noncovalent attachment of CB[7] to 4-cyanobenzyl-containing polymers, transforming the nonemissive mPEG-b-QP4VP micelles into highly fluorescent micelles. These pseudopolyrotaxanes micelles exhibited remarkable supramolecular assembly-induced emission enhancement and excellent biocompatibility, showing great potential for bioimaging applications. In addition, the efficient cellular uptake of the developed pseudopolyrotaxanes micelles loaded with the anticancer drug doxorubicin was a promising platform for simultaneous cell imaging and drug delivery, thereby widening their application in cancer theranostics.
Collapse
Affiliation(s)
- Xiumin Qiu
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry, Ministry Education, Shandong University, Jinan 250100, China
| | - Xin Wang
- School of Light Industry and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Shengzhen Hou
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry, Ministry Education, Shandong University, Jinan 250100, China
| | - Jin Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry, Ministry Education, Shandong University, Jinan 250100, China
| | - Jing Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry, Ministry Education, Shandong University, Jinan 250100, China
| | - Yebang Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry, Ministry Education, Shandong University, Jinan 250100, China.
| |
Collapse
|
23
|
Larrañeta E, Domínguez-Robles J, Coogan M, Heaney E, Stewart SA, Thakur RRS, Donnelly RF. Poly(methyl vinyl ether-co-maleic acid) Hydrogels Containing Cyclodextrins and Tween 85 for Potential Application as Hydrophobic Drug Delivery Systems. Macromol Res 2019. [DOI: 10.1007/s13233-019-7074-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Tonelli AE, Narayanan G, Gurarslan A. Host⁻Guest Polymer Complexes. Polymers (Basel) 2018; 10:E911. [PMID: 30960836 PMCID: PMC6403580 DOI: 10.3390/polym10080911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alan E Tonelli
- Fiber & Polymer Science Program College of Textiles, North Carolina State University, Campus Box 8301, 2401 Research Drive, Raleigh, NC 27695-8301, USA.
| | - Ganesh Narayanan
- Fiber & Polymer Science Program College of Textiles, North Carolina State University, Campus Box 8301, 2401 Research Drive, Raleigh, NC 27695-8301, USA.
| | - Alper Gurarslan
- Faculty of Textile Technologies and Design, Istanbul Technical University, Inonu Cad. No 65 Gumussuyu, Beyoglu, Istanbul 34437, Turkey.
| |
Collapse
|