1
|
Wang L, Wang Y, Mou C, Wang W, Zhu C, He S, Liu H, Liu W. Petal-like Patterning of Polylactide/Poly (Butylene Succinate) Thin Films Induced by Phase Separation. Polymers (Basel) 2023; 15:4463. [PMID: 38006187 PMCID: PMC10674647 DOI: 10.3390/polym15224463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polylactide (PLA) and poly (butylene succinate) (PBS) are particularly noteworthy because of their excellent biodegradability. However, the drawbacks of their mechanical properties prompts the need to compound them to achieve the desired strength. The characteristics of the interface of the composite material determine the realization of its final performance. The study of the interface and microstructure of composites is essential for the development of products from degradable polymers. The morphology evolution and microcrystal structure of spin-casted fully biodegradable (PLA/PBS) blend films were investigated using atomic force microscopy (AFM)-based nanomechanical mapping. Results show that intact blend films present an obvious phase separation, where the PBS phase is uniformly dispersed in the PLA phase in the form of pores. Furthermore, the size and number of the PBS phase have a power exponential relationship and linear relationship with PBS loading, respectively. Intriguingly, after annealing at 80 °C for 30 min, the PLA phase formed an orderly petal-like microcrystalline structure centered on the PBS phase. Moreover, the microcrystalline morphology changed from a "daisy type" to a "sunflower type" with the increased size of the PBS phase. Since the size of the PBS phase is controllable, a new method for preparing microscopic patterns using fully biodegradable polymers is proposed.
Collapse
Affiliation(s)
- Lili Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Yujie Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Chudi Mou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Wanjie Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| |
Collapse
|
2
|
Kumar R, Sadeghi K, Jang J, Seo J. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163446. [PMID: 37075991 DOI: 10.1016/j.scitotenv.2023.163446] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The extensive use of petroleum-based non-biodegradable plastics for various applications has led to global concerns regarding the severe environmental issues associated with them. However, biodegradable plastics are emerging as green alternatives to petroleum-based non-biodegradable plastics. Biodegradable plastics, which include bio-based and petroleum-based biodegradable polymers, exhibit advantageous properties such as renewability, biocompatibility, and non-toxicity. Furthermore, certain biodegradable plastics are compatible with existing recycling streams intended for conventional plastics and are biodegradable in controlled and/or predicted environments. Recycling biodegradable plastics before their end-of-life (EOL) degradation further enhances their sustainability and reduces their carbon footprint. Since the production of biodegradable plastic is increasing and these materials will coexist with conventional plastics for many years to come, it is essential to identify the optimal recycling options for each of the most prevalent biodegradable plastics. The substitution of virgin biodegradable plastics by their recyclates leads to higher savings in the primary energy demand and reduces global warming impact. This review covers the current state of the mechanical, chemical, and bio-recycling of post-industrial and post-consumer waste of biodegradable plastics and their related composites. The effects of recycling on the chemical structure and thermomechanical properties of biodegradable plastics are also reported. Additionally, the improvement of biodegradable plastics by blending them with other polymers and nanoparticles is comprehensively discussed. Finally, the status of bioplastic usage, life cycle assessment, EOL management, bioplastic market, and the challenges associated with the recyclability of biodegradable plastics are addressed. This review gives comprehensive insights into the recycling processes that may be employed for the recycling of biodegradable plastics.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Kambiz Sadeghi
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Jaeyoung Jang
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea.
| |
Collapse
|
3
|
Cicogna F, Passaglia E, Benedettini M, Oberhauser W, Ishak R, Signori F, Coiai S. Rosmarinic and Glycyrrhetinic Acid-Modified Layered Double Hydroxides as Functional Additives for Poly(Lactic Acid)/Poly(Butylene Succinate) Blends. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010347. [PMID: 36615541 PMCID: PMC9822188 DOI: 10.3390/molecules28010347] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Immobilizing natural antioxidant and biologically active molecules in layered double hydroxides (LDHs) is an excellent method to retain and release these substances in a controlled manner, as well as protect them from thermal and photochemical degradation. Herein, we describe the preparation of host-guest systems based on LDHs and rosmarinic and glycyrrhetinic acids, two molecules obtained from the extraction of herbs and licorice root, respectively, with antioxidant, antimicrobial, and anti-inflammatory properties. Intercalation between the lamellae of the mono-deprotonated anions of rosmarinic and glycyrrhetinic acid (RA and GA), alone or in the presence of an alkyl surfactant, allows for readily dispersible systems in biobased polymer matrices such as poly(lactic acid) (PLA), poly(butylene succinate) (PBS), and a 60/40 wt./wt. PLA/PBS blend. The composites based on the PLA/PBS blend showed better interphase compatibility than the neat blend, correlated with increased adhesion at the interface and a decreased dispersed phase size. In addition, we proved that the active species migrate slowly from thin films of the composite materials in a hydroalcoholic solvent, confirming the optimization of the release process. Finally, both host-guest systems and polymeric composites showed antioxidant capacity and, in the case of the PLA composite containing LDH-RA, excellent inhibitory capacity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Francesca Cicogna
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
- Correspondence: (F.C.); (S.C.); Tel.: +39-050-315-3393 (F.C.); +39-050-315-2556 (S.C.)
| | - Elisa Passaglia
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
| | - Matilde Benedettini
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
| | - Werner Oberhauser
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Randa Ishak
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, PI, Italy
| | - Francesca Signori
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, PI, Italy
| | - Serena Coiai
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
- Correspondence: (F.C.); (S.C.); Tel.: +39-050-315-3393 (F.C.); +39-050-315-2556 (S.C.)
| |
Collapse
|
4
|
Ismaeilimoghadam S, Jonoobi M, Hamzeh Y, Danti S. Effect of Nanocellulose Types on Microporous Acrylic Acid/Sodium Alginate Super Absorbent Polymers. J Funct Biomater 2022; 13:jfb13040273. [PMID: 36547534 PMCID: PMC9784917 DOI: 10.3390/jfb13040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the effect of different types of nanocellulose, i.e., cellulose nanocrystal (CNC), cellulose nanofiber (CNF) and bacterial nanocellulose (BNC), and also different drying methods (oven-drying and freeze-drying) on the properties of acrylic acid (AA)/sodium alginate (SA) super absorbent polymers (SAPs). In addition, the presence of ammonium per sulfate as an initiator and N-N methylene-bis-acrylamide as a cross-linker were considered. Synthesized SAPs were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The absorption and rheological properties (i.e., storage modulus and loss modulus) were also investigated. The results of FTIR spectroscopy demonstrated several types of interactions, such as hydrogen and esterification, between SA, AA and nanocellulose. SEM analysis revealed a microporous structure in the SAPs. All SAPs had a centrifuge retention capacity (CRC)/free swelling capacity (FSC) ≥ 69%. The absorption behavior showed that the oven-dried SAPs had superior (about 2×) CRC and FRC in different aqueous media compared to the freeze-dried counterparts. The freeze-dried SAPs showed increased rheological properties in comparison to the oven-dried ones, with SAPs containing BNC and CNC having the highest rheological properties, respectively. Overall, it can be concluded that oven-dried SAPs containing CNC had better absorption properties than the other ones tested in this study.
Collapse
Affiliation(s)
- Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
- Pisa Research Unit (UdR), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
- Correspondence: (M.J.); (S.D.)
| | - Yahya Hamzeh
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
- Correspondence: (M.J.); (S.D.)
| |
Collapse
|
5
|
Improvement of Interfacial Adhesion and Thermomechanical Properties of PLA Based Composites with Wheat/Rice Bran. Polymers (Basel) 2022; 14:polym14163389. [PMID: 36015647 PMCID: PMC9413742 DOI: 10.3390/polym14163389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The present work aims to enhance the use of agricultural byproducts for the production of bio-composites by melt extrusion. It is well known that in the production of such bio-composites, the weak point is the filler-matrix interface, for this reason the adhesion between a polylactic acid (PLA)/poly(butylene succinate)(PBSA) blend and rice and wheat bran platelets was enhanced by a treatment method applied on the fillers using a suitable beeswax. Moreover, the coupling action of beeswax and inorganic fillers (such as talc and calcium carbonate) were investigated to improve the thermo-mechanical properties of the final composites. Through rheological (MFI), morphological (SEM), thermal (TGA, DSC), mechanical (Tensile, Impact), thermomechanical (HDT) characterizations and the application of analytical models, the optimum among the tested formulations was then selected.
Collapse
|
6
|
Hamdiani S, Shih YF. Development of polylactic acid-polybutylene succinate-silver nanoparticle-diatomite (PLAPBS-AgNPs-D) composite in different compatibilizer as potential pollutants storage container for methylene blue self-degradation. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P. A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers (Basel) 2022; 14:polym14040844. [PMID: 35215757 PMCID: PMC8963078 DOI: 10.3390/polym14040844] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
PBS, an acronym for poly (butylene succinate), is an aliphatic polyester that is attracting increasing attention due to the possibility of bio-based production, as well as its balanced properties, enhanced processability, and excellent biodegradability. This brief review has the aim to provide the status concerning the synthesis, production, thermal, morphological and mechanical properties underlying biodegradation ability, and major applications of PBS and its principal copolymers.
Collapse
Affiliation(s)
- Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (V.G.); (P.C.)
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (V.G.); (P.C.)
| |
Collapse
|
8
|
|
9
|
Gigante V, Panariello L, Coltelli MB, Danti S, Obisesan KA, Hadrich A, Staebler A, Chierici S, Canesi I, Lazzeri A, Cinelli P. Liquid and Solid Functional Bio-Based Coatings. Polymers (Basel) 2021; 13:3640. [PMID: 34771197 PMCID: PMC8586997 DOI: 10.3390/polym13213640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
The development of new bio-based coating materials to be applied on cellulosic and plastic based substrates, with improved performances compared to currently available products and at the same time with improved sustainable end of life options, is a challenge of our times. Enabling cellulose or bioplastics with proper functional coatings, based on biopolymer and functional materials deriving from agro-food waste streams, will improve their performance, allowing them to effectively replace fossil products in the personal care, tableware and food packaging sectors. To achieve these challenging objectives some molecules can be used in wet or solid coating formulations, e.g., cutin as a hydrophobic water- and grease-repellent coating, polysaccharides such as chitosan-chitin as an antimicrobial coating, and proteins as a gas barrier. This review collects the available knowledge on functional coatings with a focus on the raw materials used and methods of dispersion/application. It considers, in addition, the correlation with the desired final properties of the applied coatings, thus discussing their potential.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.P.); (S.D.); (A.L.)
- Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.P.); (S.D.); (A.L.)
- Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.P.); (S.D.); (A.L.)
- Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.P.); (S.D.); (A.L.)
- Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | | | - Ahdi Hadrich
- Biomass Valorization Platform-Materials, CELABOR s.c.r.l., 4650 Chaineux, Belgium;
| | - Andreas Staebler
- Fraunhofer-Institute for Process Engineering and Packaging, 85354 Freising, Germany;
| | - Serena Chierici
- Stazione Sperimentale per l’Industria delle Conserve Alimentari (SSICA), 43121 Parma, Italy;
| | | | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.P.); (S.D.); (A.L.)
- Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Planet Bioplastics s.r.l., 56017 Pisa, Italy;
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.P.); (S.D.); (A.L.)
- Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Planet Bioplastics s.r.l., 56017 Pisa, Italy;
| |
Collapse
|
10
|
Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Poly(butylene succinate) (PBS) has good impact strength and high elongation at break. It is used to toughen biodegradable poly(lactic acid) (PLA) materials because it can considerably improve the toughness of PLA without changing the biodegradability of the materials. Therefore, this approach has become a hotspot in the field of biodegradable materials. A review of the physical and chemical modification methods that are applied to improve the performance of PLA/PBS blends based on recent studies is presented in this article. The improvement effect of PLA/PBS blends and the addition of some common fillers on the physical properties and crystallization properties of blends in the physical modification method are summarized briefly. The compatibilizing effects of nanofillers and compatibilizing agents necessary to improve the compatibility and toughness of PLA/PBS blends are described in detail. The chemical modification method involving the addition of reactive polymers and low-molecular-weight compounds to form cross-linked/branched structures at the phase interface during in situ reactions was introduced clearly. The addition of reactive compatibilizing components is an effective strategy to improve the compatibility between PLA and PBS components and further improve the mechanical properties and processing properties of the materials. It has high research value and wide application prospects in the modification of PLA. In addition, the degradation performance of PLA/PBS blends and the methods to improve the degradation performance were briefly summarized, and the development direction of PLA/PBS blends biodegradation performance research was prospected.
Collapse
|
11
|
Dispersion of Micro Fibrillated Cellulose (MFC) in Poly(lactic acid) (PLA) from Lab-Scale to Semi-Industrial Processing Using Biobased Plasticizers as Dispersing Aids. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, two commercial typologies of microfibrillated cellulose (MFC) (Exilva and Celish) with 2% wt % were firstly melt-compounded at the laboratory scale into polylactic acid (PLA) by a microcompounder. To reach an MFC proper dispersion and avoid the well-known aglomeration problems, the use of two kinds of biobased plasticisers (poly(ethylene glycol) (PEG) and lactic acid oligomer (OLA)) were investigated. The plasticizers had the dual effect of dispersing the MFC, and at the same time, they counterbalanced the excessive stiffness caused by the addition of MFC to the PLA matrix. Several preliminaries dilution tests, with different aqueous cellulose suspension/plasticizer weight ratios were carried out. These tests were accompanied by SEM observations and IR and mechanical tests on compression-molded films in order to select the best plasticizer content. The best formulation was then scaled up in a semi-industrial twin-screw extruder, feeding the solution by a peristaltic pump, to optimize the industrial-scale production of commercial MFC-based composites with a solvent-free method. From this study, it can be seen that the use of plasticisers as dispersing aids is a biobased and green solution that can be easily used in conventional extrusion techniques.
Collapse
|
12
|
Immunomodulatory Activity of Electrospun Polyhydroxyalkanoate Fiber Scaffolds Incorporating Olive Leaf Extract. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Olive tree is a well-known source of polyphenols. We prepared an olive leaf extract (OLE) and characterized it via high performance liquid chromatography (HPLC) analysis. OLE was blended with different polyhydroxyalkanoates (PHAs), namely, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) and polyhydroxybutyrate/poly(hydroxyoctanoate-co-hydroxydecanoate) (PHB/PHOHD), to produce fiber meshes via electrospinning: OLE/PHBV and OLE/ (PHB/PHOHD), respectively. An 80–90% (w/w%) release of the main polyphenols from the OLE/PHA fibers occurred in 24 h, with a burst release in the first 30 min. OLE and the produced fiber meshes were assayed using human dermal keratinocytes (HaCaT cells) to evaluate the expression of a panel of cytokines involved in the inflammatory process and innate immune response, such as the antimicrobial peptide human beta defensin 2 (HBD-2). Fibers containing OLE were able to decrease the expression of the pro-inflammatory cytokines at 6 h up to 24 h. All the PHA fibers allowed an early downregulation of the pro-inflammatory cytokines in 6 h, which is suggestive of a strong anti-inflammatory activity exerted by PHA fibers. Differently from pure OLE, PHB/PHOHD fibers (both with and without OLE) upregulated the expression of HBD-2. Our results showed that PHA fiber meshes are suitable in decreasing pro-inflammatory cytokines and the incorporation of OLE may enable indirect antibacterial properties, which is essential in wound healing and tissue regeneration.
Collapse
|
13
|
Effect of Mineral Fillers on the Mechanical Properties of Commercially Available Biodegradable Polymers. Polymers (Basel) 2021; 13:polym13030394. [PMID: 33513697 PMCID: PMC7865997 DOI: 10.3390/polym13030394] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
In the successful transition towards a circular materials economy, the implementation of biobased and biodegradable plastics is a major prerequisite. To prevent the accumulation of plastic material in the open environment, plastic products should be both recyclable and biodegradable. Research and development actions in the past few decades have led to the commercial availability of a number of polymers that fulfil both end-of-life routes. However, these biobased and biodegradable polymers typically have mechanical properties that are not on par with the non-biodegradable plastic products they intend to replace. This can be improved using particulate mineral fillers such as talc, calcium carbonate, kaolin, and mica. This study shows that composites thereof with polybutylene succinate (PBS), polyhydroxybutyrate-hexanoate (PHBH), polybutylene succinate adipate (PBSA), and polybutylene adipate terephthalate (PBAT) as matrix polymers result in plastic materials with mechanical properties ranging from tough elastic towards strong and rigid. It is demonstrated that the balance between the Young’s modulus and the impact resistance for this set of polymer composites is subtle, but a select number of investigated compositions yield a combination of industrially relevant mechanical characteristics. Finally, it is shown that the inclusion of mineral fillers into biodegradable polymers does not negate the microbial disintegration of these polymers, although the nature of the filler does affect the biodegradation rate of the matrix polymer.
Collapse
|
14
|
Poly(lactic acid) (PLA)/Poly(butylene succinate-co-adipate) (PBSA) Compatibilized Binary Biobased Blends: Melt Fluidity, Morphological, Thermo-Mechanical and Micromechanical Analysis. Polymers (Basel) 2021; 13:polym13020218. [PMID: 33435479 PMCID: PMC7827856 DOI: 10.3390/polym13020218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
In this work poly(lactic) acid (PLA)/poly(butylene succinate-co-adipate) (PBSA) biobased binary blends were investigated. PLA/PBSA mixtures with different compositions of PBSA (from 15 up to 40 wt.%) were produced by twin screw-extrusion. A first screening study was performed on these blends that were characterized from the melt fluidity, morphological and thermo-mechanical point of view. Starting from the obtained results, the effect of an epoxy oligomer (EO) (added at 2 wt.%) was further investigated. In this case a novel approach was introduced studying the micromechanical deformation processes by dilatometric uniaxial tensile tests, carried out with a videoextensometer. The characterization was then completed adopting the elasto-plastic fracture approach, by the measurement of the capability of the selected blends to absorb energy at a slow rate. The obtained results showed that EO acts as a good compatibilizer, improving the compatibility of the rubber phase into the PLA matrix. Dilatometric results showed different micromechanical responses for the 80–20 and 60–40 blends (probably linked to the different morphology). The 80–20 showed a cavitational behavior while the 60–40 a deviatoric one. It has been observed that while the addition of EO does not alter the micromechanical response of the 60–40 blend, it profoundly changes the response of the 80–20, that passed to a deviatoric behavior with the EO addition.
Collapse
|
15
|
Affiliation(s)
- Maria Laura Di Lorenzo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Pozzuoli, Italy
| |
Collapse
|
16
|
Gigante V, Aliotta L, Coltelli MB, Cinelli P, Botta L, La Mantia FP, Lazzeri A. Fracture behavior and mechanical, thermal, and rheological properties of biodegradable films extruded by flat die and calender. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering University of Pisa Pisa Italy
| | - Laura Aliotta
- Department of Civil and Industrial Engineering University of Pisa Pisa Italy
| | | | - Patrizia Cinelli
- Department of Civil and Industrial Engineering University of Pisa Pisa Italy
| | - Luigi Botta
- Department of Engineering, RU INSTM of Palermo University of Palermo Palermo Italy
| | | | - Andrea Lazzeri
- Department of Civil and Industrial Engineering University of Pisa Pisa Italy
| |
Collapse
|
17
|
Coltelli MB, Danti S. Biobased Materials for Skin-Contact Products Promoted by POLYBIOSKIN Project. J Funct Biomater 2020; 11:jfb11040077. [PMID: 33137964 PMCID: PMC7711798 DOI: 10.3390/jfb11040077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/04/2022] Open
|
18
|
Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene Adipate- co-Terephthalate) (PBAT) Blends †,‡. Polymers (Basel) 2020; 12:polym12102317. [PMID: 33050501 PMCID: PMC7600530 DOI: 10.3390/polym12102317] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Compression molded biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) at varying weights were prepared, and their relevant properties for packaging applications are here reported. The melt rheology of the blends was first studied, and the binary PBS/PBAT blends exhibited marked shear thinning and complex thermoreological behavior, due to the formation of a co-continuous morphology in the 50 wt% blend. The films were characterized by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), mechanical tensile tests, scanning electron microscopy (SEM), and oxygen and water vapor permeability. PBS crystallization was inhibited in the blends with higher contents of PBAT, and FTIR and SEM analysis suggested that limited interactions occur between the two polymer phases. The films showed increasing stiffness as the PBS percentage increased; further, a sharp decrease in elongation at break was noticed for the films containing percentages of PBS greater than 25 wt%. Gas permeability decreased with increasing PBS content, indicating that the barrier properties of PBS can be tuned by blending with PBAT. The results obtained point out that the blend containing 25 wt% PBS is a good compromise between elastic modulus (135 MPa) and deformation at break (390%) values. Overall, PBS/PBAT blends represent an alternative for packaging films, as they combine biodegradability, good barrier properties and reasonable mechanical behavior.
Collapse
|
19
|
Biodegradable poly(lactic acid)/poly(butylene succinate) Nanofibrous membrane with Core-shell structure and high density for improved mechanical properties. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02265-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Abstract
The surgical face mask (SFM) is a sheet medical device covering the mouth, nose and chin to protect the medical staff from the spread of respiratory droplets produced by the infective coughing or sneezing of hospitalized patients. On the other hand the beauty face mask (BFM) has been made by the same sheet but with a different aim—to protect the skin from pollution, acting as a hydrating and rejuvenation agent. Currently, both masks are made principally by non-biodegradable tissues, utilized to avoid the increasing great pollution invading our planet. Due to the diffusion of the current COVID-19 infection rate and the increasing consumption of skin care and beauty products, the waste of these masks, made principally by petrol-derived polymers, is creating further intolerable waste-invaded land and oceans. After an introduction to the aims, differences and market of the various masks, their productive means and ingredients are reported. These news are believed necessary to give the reader the working knowledge of these products, in the context of the bioeconomy, to better understand the innovative tissues proposed and realized by the biobased and biodegradable polymers. Thus, the possibility of producing biodegradable SFMs and BFMs, characterized for their effective antimicrobial and skin repairing activities or hydrating and antiaging activity, respectively. These innovative smart and biodegradable masks are requested from the majority of consumers oriented towards a future green environment. Giving this new sense of direction to their production and consumption, it will be possible to reduce the current waste, ranging worldwide at about 2 billion tons per year.
Collapse
|
21
|
Quattrosoldi S, Soccio M, Gazzano M, Lotti N, Munari A. Fully biobased, elastomeric and compostable random copolyesters of poly(butylene succinate) containing Pripol 1009 moieties: Structure-property relationship. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Coltelli MB, Aliotta L, Gigante V, Bellusci M, Cinelli P, Bugnicourt E, Schmid M, Staebler A, Lazzeri A. Preparation and Compatibilization of PBS/Whey Protein Isolate Based Blends. Molecules 2020; 25:molecules25143313. [PMID: 32708298 PMCID: PMC7397279 DOI: 10.3390/molecules25143313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
In this paper the production of biopolymeric blends of poly(butylene succinate) PBS and plasticized whey protein (PWP), obtained from a natural by-product from cheese manufacturing, has been investigated for the production of films and/or sheets. In order to add the highest possible whey protein content, different formulations (from 30 to 50 wt.%) were studied. It was found that by increasing the amount of PWP added to PBS, the mechanical properties were worsened accordingly. This trend was attributed to the low compatibility between PWP and PBS. Consequently, the effect of the addition of soy lecithin and glycerol monostearate (GMS) as compatibilizers was investigated and compared to the use of whey protein modified with oleate and laurate groups obtained by Schotten-Baumann reaction. Soy lecithin and the Schotten-Baumann modified whey were effective in compatibilizing the PWP/PBS blend. In fact, a significant increase in elastic modulus, tensile strength and elongation at break with respect to the not compatibilized blend was observed and the length of aliphatic chains as well as the degree of modification of the Schotten–Baumann proteins affected the results. Moreover, thanks to DSC investigations, these compatibilizers were also found effective in increasing the PBS crystallinity.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (V.G.); (M.B.); (P.C.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: ; Tel.: +39-050-2217856
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (V.G.); (M.B.); (P.C.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (V.G.); (M.B.); (P.C.); (A.L.)
| | - Maria Bellusci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (V.G.); (M.B.); (P.C.); (A.L.)
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (V.G.); (M.B.); (P.C.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Elodie Bugnicourt
- IRIS Technology Solutions S.L., Parc Mediterrani de la Technologia, Avda.Carl Friedrich Gauss No. 11, Castelldefels, 08860 Barcelona, Spain;
| | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmalingen, Germany;
| | - Andreas Staebler
- Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV, 85354 Freising, Germany;
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (V.G.); (M.B.); (P.C.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| |
Collapse
|
23
|
Aliotta L, Vannozzi A, Panariello L, Gigante V, Coltelli MB, Lazzeri A. Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films. Polymers (Basel) 2020; 12:polym12061366. [PMID: 32560520 PMCID: PMC7361961 DOI: 10.3390/polym12061366] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticized poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blend-based films containing chitin nanofibrils (CN) and calcium carbonate were prepared by extrusion and compression molding. On the basis of previous studies, processability was controlled by the use of a few percent of a commercial acrylic copolymer acting as melt strength enhancer and calcium carbonate. Furthermore, acetyl n-tributyl citrate (ATBC), a renewable and biodegradable plasticizer (notoriously adopted in PLA based products) was added to facilitate not only the processability but also to increase the mechanical flexibility and toughness. However, during the storage of these films, a partial loss of plasticizer was observed. The consequence of this is not only correlated to the change of the mechanical properties making the films more rigid but also to the crystallization and development of surficial oiliness. The effect of the addition of calcium carbonate (nanometric and micrometric) and natural nanofibers (chitin nanofibrils) to reduce/control the plasticizer migration was investigated. The prediction of plasticizer migration from the films’ core to the external surface was carried out and the diffusion coefficients, obtained by regression of the experimental migration data plotted as the square root of time, were evaluated for different blends compositions. The results of the diffusion coefficients, obtained thanks to migration tests, showed that the CN can slow the plasticizer migration. However, the best result was achieved with micrometric calcium carbonate while nanometric calcium carbonate results were less effective due to favoring of some bio polyesters’ chain scission. The use of both micrometric calcium carbonate and CN was counterproductive due to the agglomeration phenomena that were observed.
Collapse
Affiliation(s)
- Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (L.A.); (M.-B.C.)
| | - Alessandro Vannozzi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (L.A.); (M.-B.C.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| |
Collapse
|
24
|
Modification of PLA-Based Films by Grafting or Coating. J Funct Biomater 2020; 11:jfb11020030. [PMID: 32392750 PMCID: PMC7353487 DOI: 10.3390/jfb11020030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Recently, the demand for the use of natural polymers in the cosmetic, biomedical, and sanitary sectors has been increasing. In order to meet specific functional properties of the products, usually, the incorporation of the active component is required. One of the main problems is enabling compatibility between hydrophobic and hydrophilic surfaces. Therefore, surface modification is necessary. Poly(lactide) (PLA) is a natural polymer that has attracted a lot ofattention in recent years. It is bio-based, can be produced from carbohydrate sources like corn, and it is biodegradable. The main goal of this work was the functionalization of PLA, inserting antiseptic and anti-inflammatory nanostructured systems based on chitin nanofibrils-nanolignin complexes ready to be used in the biomedical, cosmetics, and sanitary sectors. The specific challenge of this investigation was to increase the interaction between the hydrophobic PLA matrix with hydrophilic chitin-lignin nanoparticle complexes. First, chemical modification via the "grafting from" method using lactide oligomers was performed. Then, active coatings with modified and unmodified chitin-lignin nanoparticle complexes were prepared and applied on extruded PLA-based sheets. The chemical, thermal, and mechanical characterization of prepared samples was carried out and the obtained results were discussed.
Collapse
|
25
|
Coltelli MB, Panariello L, Morganti P, Danti S, Baroni A, Lazzeri A, Fusco A, Donnarumma G. Skin-Compatible Biobased Beauty Masks Prepared by Extrusion. J Funct Biomater 2020; 11:jfb11020023. [PMID: 32268483 PMCID: PMC7353523 DOI: 10.3390/jfb11020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023] Open
Abstract
In the cosmetic sector, natural and sustainable products with a high compatibility with skin, thus conjugating wellness with a green-oriented consumerism, are required by the market. Poly(hydroxyalkanoate) (PHA)/starch blends represent a promising alternative to prepare flexible films as support for innovative beauty masks, wearable after wetting and releasing starch and other selected molecules. Nevertheless, preparing these films by extrusion is difficult due to the high viscosity of the polymer melt at the temperature suitable for processing starch. The preparation of blends including poly(butylene succinate-co-adipate) (PBSA) or poly(butylene adipate-co-terephthalate) (PBAT) was investigated as a strategy to better modulate melt viscosity in view of a possible industrial production of beauty mask films. The release properties of films in water, connected to their morphology, was also investigated by extraction trials, infrared spectroscopy and stereo and electron microscopy. Then, the biocompatibility with cells was assessed by considering both mesenchymal stromal cells and keratinocytes. All the results were discussed considering the morphology of the films. This study evidenced the possibility of modulating thanks to the selection of composition and the materials processing of the properties necessary for producing films with tailored properties and processability for beauty masks.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Correspondence: (M.-B.C.); (G.D.); Tel.: +39-050-2217856 (M.-B.C.)
| | - Luca Panariello
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Pierfrancesco Morganti
- Academy of History of Health Care Art, 00193 Rome, Italy;
- Dermatology Department, China Medical University, Shenyang 110001, China
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Adone Baroni
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Andrea Lazzeri
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Alessandra Fusco
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Donnarumma
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (M.-B.C.); (G.D.); Tel.: +39-050-2217856 (M.-B.C.)
| |
Collapse
|
26
|
Coltelli MB, Aliotta L, Vannozzi A, Morganti P, Panariello L, Danti S, Neri S, Fernandez-Avila C, Fusco A, Donnarumma G, Lazzeri A. Properties and Skin Compatibility of Films Based on Poly(Lactic Acid) (PLA) Bionanocomposites Incorporating Chitin Nanofibrils (CN). J Funct Biomater 2020; 11:E21. [PMID: 32244595 PMCID: PMC7353621 DOI: 10.3390/jfb11020021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobiocomposites suitable for preparing skin compatible films by flat die extrusion were prepared by using plasticized poly(lactic acid) (PLA), poly(butylene succinate-co-adipate) (PBSA), and Chitin nanofibrils as functional filler. Chitin nanofibrils (CNs) were dispersed in the blends thanks to the preparation of pre-nanocomposites containing poly(ethylene glycol). Thanks to the use of a melt strength enhancer (Plastistrength) and calcium carbonate, the processability and thermal properties of bionanocomposites films containing CNs could be tuned in a wide range. Moreover, the resultant films were flexible and highly resistant. The addition of CNs in the presence of starch proved not advantageous because of an extensive chain scission resulting in low values of melt viscosity. The films containing CNs or CNs and calcium carbonate resulted biocompatible and enabled the production of cells defensins, acting as indirect anti-microbial. Nevertheless, tests made with Staphylococcus aureus and Enterobacter spp. (Gram positive and negative respectively) by the qualitative agar diffusion test did not show any direct anti-microbial activity of the films. The results are explained considering the morphology of the film and the different mechanisms of direct and indirect anti-microbial action generated by the nanobiocomposite based films.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Alessandro Vannozzi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
| | - Simona Neri
- IRIS Technology Solutions S.L, 08860 Castelldefels, Barcelona, Spain; (S.N.); (C.F.-A.)
| | | | - Alessandra Fusco
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Donnarumma
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| |
Collapse
|