1
|
Aswani R, Das S, Sebastian KS, Mathew J, Radhakrishnan EK. Development of biocomposite films incorporated with the extract from pitcher associated bacteria for the postharvest protection from fungi. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2157-2165. [PMID: 39397836 PMCID: PMC11464650 DOI: 10.1007/s13197-024-05986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 10/15/2024]
Abstract
Pythium aphanidermatum is known to cause diseases like damping-off, root rot, stem rot and fruit rot in a wide range of plants. Eventhough many chemical methods have been demonstrated to have the potential to manage these diseases, their benefits are being offset equally by the negative side effects. Therefore, the control of Pythium spp. using natural antifungal agents is of immense significance due to its environmental safety. Here, the plant associated microorganisms with antifungal metabolites have significant promises to be explored both as sustainable biocontrol agents and also as active constituents of antifungal materials. Antimicrobial packaging films prepared using such components can have significant applications to meet the requirements to prevent postharvest loss of agricultural produce by inhibiting the fungal growth. Eventhough there are reports on the development of antimicrobial packaging films for such applications, the use of bacterial extracts with antifungal activity for the same is least investigated. Hence, the present study demonstrates the development of biocomposite films prepared using polyvinyl alcohol (PVA) incorporated with the extracts prepared from bacterial isolates (Serratia sp. NhPB1, Kocuria sp. NhPB49, and Pantoea dispersa NhPB54) previously isolated from the pitcher plant. Here, the individual films were prepared by incorporating 1 mL of bacterial extract in 40 mL of 3% PVA solution and the developed films were then subjected to antifungal activity screening against P. aphanidermatum. The antifungal activity analysis of the films prepared with the incorporation of extracts from Serratia sp. NhPB1, Kocuria sp. NhPB49, and Pantoea dispersa NhPB54 showed remarkable activity against the tested pathogen. The application of biocomposite films on Solanum lycopersicum and Capsicum annuum fruits for its protection from P. aphanidermatum by dip coating method further indicates the promises of developed biocomposite films for active packaging applications.
Collapse
Affiliation(s)
- R. Aswani
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - Soumya Das
- Department of Zoology, KE College, Mannanam, Kottayam, Kerala 686561 India
| | - K. S. Sebastian
- Department of Zoology, Government College, Kottayam, Kerala 686013 India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - E. K. Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| |
Collapse
|
2
|
Ali MH, Dutta SK, Sultana MS, Habib A, Dhar PK. Green synthesized CeO 2 nanoparticles-based chitosan/PVA composite films: Enhanced antimicrobial activities and mechanical properties for edible berry tomato preservation. Int J Biol Macromol 2024; 280:135976. [PMID: 39326598 DOI: 10.1016/j.ijbiomac.2024.135976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The current study is intended to enhance unique bioactive and eco-friendly composite films following a simple solvent-casting approach by incorporating cerium oxide nanoparticles (CeO2 NPs) with a chitosan (CS)/polyvinyl alcohol (PVA) matrix. Antimicrobial activity, preservation impact, mechanisms for the edible berry tomatoes and physicochemical properties of the produced films were tested. FTIR, SEM-EDX, XRD, UV-vis spectroscopy and contact angle were used to characterize the films. Incorporated (3.0 wt%) CeO2 NPs practically developed composite film's thermal stability, structural, mechanical, bioactive, antioxidant, barrier and wettability properties. The tomatoes' look, weight loss and stiffness were better preserved after 25 days of storage at room temperature (25 ± 5 °C) when 3.0 wt% CeO2 NPs films were used instead of the original CS/PVA film. CS and CeO2 NPs have unique physiochemical and antibacterial properties. Food packaging extensively investigates the modified films as antimicrobials and preservatives to increase the shelf life of packaged foods, owing to their ability to inhibit gram-positive bacteria (Bacillus cereus and Staphylococcus aureus), gram-negative bacteria (Klebsiella pneumoniae and Pseudomonas aeruginosa), and filamentous fungi (Bipolaris sorokiniana, Fusarium op., and Alternaria sp.). Our findings indicated that the CeO2/CS/PVA composite films could be used as effective wrapping materials for food preservation.
Collapse
Affiliation(s)
- Md Hridoy Ali
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| | | | | | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | | |
Collapse
|
3
|
Kurtulbaş E, Ciğeroğlu Z, Şahin S, El Messaoudi N, Mehmeti V. Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C 3N 4/ZnO/Chitosan nanocomposite in the presence of a deep eutectic solvent. Int J Biol Macromol 2024; 274:133378. [PMID: 38914401 DOI: 10.1016/j.ijbiomac.2024.133378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Deep-eutectic solvents (DES) have emerged as promising candidates for preparing nanocomposites. In this study, a DES-based graphitic carbon nitride (g-C3N4)/ZnO/Chitosan (Ch) nanocomposite was synthesized to remove malachite green (MG) dye from water. The DES was prepared by mixing and heating citric acid as a hydrogen bond acceptor and lactic acid as a hydrogen bond donor. This is the first report of the removal of MG using DES-based nanocomposites. Experiments on kinetics and isothermal adsorption were conducted to systematically explore the adsorption performances of nanocomposite toward dye. At 25 °C, the highest adsorption performance was obtained with alkaline media (>90 % removal). The greatest adsorption capacity (qm) was 59.52 mg g-1 at conditions (30 mg L-1 MG solution, pH 9, 3 mg nanocomposite per 10 mL of MG solution, 25 °C, 150 rpm, and 150 min) based on the calculation from the best-fitting isotherm model (Langmuir). The adsorption process was most appropriately kinetically described by the PSO model. The Monte Carlo (MC) and molecular dynamic (MC) results are correlated with experimental findings to validate the theoretical predictions and enhance the overall understanding of the adsorption process. Electronic structure calculations reveal the nature of interactions, including hydrogen bonding and electrostatic forces, between the nanocomposite and MG molecules.
Collapse
Affiliation(s)
- Ebru Kurtulbaş
- Istanbul University-Cerrahpasa, Faculty of Engineering, Chemical Engineering Department, 34320 Avcilar, Istanbul, Türkiye
| | - Zeynep Ciğeroğlu
- Uşak University, Faculty of Engineering and Sciences, Chemical Engineering Department, 64300 Uşak, Türkiye.
| | - Selin Şahin
- Istanbul University-Cerrahpasa, Faculty of Engineering, Chemical Engineering Department, 34320 Avcilar, Istanbul, Türkiye
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Valbonë Mehmeti
- University of Prishtina, Faculty of Agriculture and Veterinary, Prishtina, Kosovo
| |
Collapse
|
4
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
5
|
Petry JM, Pellá MCG, Silva OA, Caetano J, Dragunski DC. Plasticizer concentration effect on films and coatings based on poly(vinyl alcohol) and cationic starch blends. Food Chem 2024; 438:137977. [PMID: 37976874 DOI: 10.1016/j.foodchem.2023.137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Films based on poly(vinyl alcohol) (PVA) and cationic starch (CS) were combined with different percentages of sorbitol (S; 15.0, 22.5, and 30.0% w v-1) to assess the effect of plasticizer on the films. Spectroscopic analyses confirmed the interaction between them. However, micrographs indicated the formation of sorbitol crystals on the surface of the films, especially at higher sorbitol concentrations. The blends presented low water vapor transmission rate values, reaching (7.703 ± 0.000) g h-1 m-2 (PVA75CS25S15), and low solubility values for the films containing higher CS amounts. The lack of statistical differences in most parameters suggests that no significant gain comes from increasing the amount of sorbitol at percentages higher than 15%. As a coating, the blend PVA75CS25S15 successfully decreased the loss of moisture content in acerolas by 1.15 times (compared to the control), confirming the suitability of this matrix as a fruit coating.
Collapse
Affiliation(s)
- Jaiane Maiara Petry
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil
| | | | - Otavio Augusto Silva
- Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil
| | - Josiane Caetano
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil
| | - Douglas Cardoso Dragunski
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil; Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil.
| |
Collapse
|
6
|
Abdel-Hamed MO, Draz AA, Khalaf M, El-Hossary FM, Mohamed HFM, Abdel-Hady EE. Effect of Plasma pretreatment and Graphene oxide ratios on the transport properties of PVA/PVP membranes for fuel cells. Sci Rep 2024; 14:1092. [PMID: 38212527 PMCID: PMC10784575 DOI: 10.1038/s41598-024-51237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
In this study, a novel proton-conducting polymer electrolyte membrane based on a mixture of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) (1:1) mixed with different ratios of graphene oxide (GO) and plasma-treated was successfully synthesized. Dielectric barrier dielectric (DBD) plasma was used to treat the prepared samples at various dose rates (2, 4, 6, 7, 8, and 9 min) and at fixed power input (2 kV, 50 kHz). The treated samples (PVA/PVP:GO wt%) were soaked in a solution of styrene and tetrahydrofuran (70:30 wt%) with 5 × 10-3 g of benzoyl peroxide as an initiator in an oven at 60 °C for 12 h and then sulfonated to create protonic membranes (PVA/PVP-g-PSSA:GO). The impacts of graphene oxide (GO) on the physical, chemical, and electrochemical properties of plasma-treated PVA/PVP-g-PSSA:x wt% GO membranes (x = 0, 0.1, 0.2, and 0.3) were investigated using different techniques. SEM results showed a better dispersion of nanocomposite-prepared membranes; whereas the AFM results showed an increase in total roughness with increasing the content of GO. FTIR spectra provide more information about the structural variation arising from the grafting and sulfonation processes to confirm their occurrence. The X-ray diffraction pattern showed that the PVA/PVP-g-PSSA:x wt% GO composite is semi-crystalline. As the level of GO mixing rises, the crystallinity of the mixes decreases. According to the TGA curve, the PVA/PVP-g-PSSA:x wt% GO membranes are chemically stable up to 180 °C which is suitable for proton exchange membrane fuel cells. Water uptake (WU) was also measured and found to decrease from 87.6 to 63.3% at equilibrium with increasing GO content. Ion exchange capacity (IEC) was calculated, and the maximum IEC value was 1.91 meq/g for the PVA/PVP-g-PSSA: 0.3 wt% GO composite membrane. At room temperature, the maximum proton conductivity was 98.9 mS/cm for PVA/PVP-g-PSSA: 0.3 wt% GO membrane. In addition, the same sample recorded a methanol permeability of 1.03 × 10-7 cm2/s, which is much less than that of Nafion NR-212 (1.63 × 10-6 cm2/s). These results imply potential applications for modified polyelectrolytic membranes in fuel cell technology.
Collapse
Affiliation(s)
- M O Abdel-Hamed
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt.
| | - Aya A Draz
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Mohamed Khalaf
- Physics Department, Faculty of Science, Sohag University, P.O. Box 82524, Sohag, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, P.O. Box 82524, Sohag, Egypt
| | - Hamdy F M Mohamed
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - E E Abdel-Hady
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| |
Collapse
|
7
|
Medadurai K, Pandiarajan N, Balasubramanian B, Pandiarajan B. Fabrication and Testing of Crop Waste Ceiba pentandra Shell Powder Reinforced Biodegradable Composite Films. ACS OMEGA 2023; 8:42762-42775. [PMID: 38024710 PMCID: PMC10652836 DOI: 10.1021/acsomega.3c05577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Ceiba pentandra shell powder (CPSP) biowaste is chosen as a biofiller combined with poly(vinyl alcohol) (PVA) as a matrix to make biofilms to increase the exploitation of biowaste materials and reduce the use of plastic materials. FTIR plots indicated no significant chemical reaction or formation of new functional groups during interaction between PVA and CPSP. XRD diffractograms showed that the crystallinity index (35.3, 38.6, 42.3, 46.4, and 48.5%) and crystalline size (18.14, 20.89, 23.23, 24.87, and 26.34 nm) of biofilms increased with CPSP loading (5-25 wt %). The PVA/CPSP films are thermally stable up to 322 °C. The peak highs of AFM images showed that the films' surface roughness gradually increased from 94.75 nm (5 wt % CPSP) to 320.17 nm (25 wt % CPSP). The FESEM micrographs clarify the homogeneous distribution of CPSP in the PVA matrix. Tensile strength and tensile modulus are noticeably increased by 26.32 and 37.92%, respectively, as a result of the loading of CPSP from 5 to 20 wt % in the PVA matrix. The PVA/CPSP films outperform pure PVA films in UV shielding (350-450 nm). The 59% weight loss of films was estimated during 60 days of burial. The fabricated biofilms maintained their suitable structural, thermal, morphological, and mechanical properties. Additionally, they exhibited consistent performance in ultraviolet (UV) barrier, opacity, water absorption, water vapor permeability, soil burial, and antimicrobial characteristics over time. Overall, PVA/CPSP (5-25 wt %) films are biodegradable and have promising applications as good packaging materials.
Collapse
Affiliation(s)
- Kaliraj Medadurai
- Department
of Mechanical Engineering, AAA College of
Engineering and Technology, Sivakasi , Tamil Nadu 625020, India
| | - Narayanasamy Pandiarajan
- Department
of Mechanical Engineering, Kamaraj College
of Engineering and Technology, Madurai, Tamil Nadu 625701, India
| | - Balavairavan Balasubramanian
- Department
of Mechanical Engineering, Kamaraj College
of Engineering and Technology, Madurai, Tamil Nadu 625701, India
| | - Balasundar Pandiarajan
- Department
of Mechatronics Engineering, Kamaraj College
of Engineering and Technology, Near Virudhunagar, Madurai, Tamil Nadu 625701, India
| |
Collapse
|
8
|
Shurmasti DK, Kermani PR, Sarvarian M, Awuchi CG. Egg shelf life can be extended using varied proportions of polyvinyl alcohol/chitosan composite coatings. Food Sci Nutr 2023; 11:5041-5049. [PMID: 37701199 PMCID: PMC10494576 DOI: 10.1002/fsn3.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 09/14/2023] Open
Abstract
Using biopolymers in the form of edible coating as egg eco-friendly packaging is a progressive approach. The blending of biopolymers is one of the procedures for overcoming mechanical weakness and benefiting from their maximum synergistic effect. Aiming to determine the relative ratios of chitosan (CH 4 w/v%) and polyvinyl alcohol (PVA 5 w/v%) in the composition of blended coatings, an experiment was conducted with six treatments (r = 3) including different ratios of CH/PVA (0:0; control, 100:0, 75:25, 50:50, 25:75, and 0:100) wt% in a period of 4 weeks of egg storage at ambient temperature, emphasizing eggshell barrier properties. Based on the eggshell analysis result, SEM images and FTIR spectra demonstrated that the components were firmly integrated into the blended coatings as well as had more intertwined than their pure ones, which was also reflected in the evaluation results of their internal quality parameters. In addition, the results showed that by enhancing the ratio of polyvinyl alcohol from 25 to 75 wt%, the blended coating barrier efficiency was relatively improved (p < .05). Meanwhile, the lowest percentage of weight loss (0.57 ± 0.08%), pH value of albumin (8.30 ± 0.04), the highest values of Haugh unit (61.00 ± 0.07), yolk index (0.37 ± 0.02) were observed in eggs coated with CH/PVA 25:75 wt%. But there was no difference in 50 or 70 wt% PVA significantly. Therefore, the CH/PVA blended coatings containing around 50-75 wt% PVA, as egg biodegradable packaging, can be used to extend the shelf life for 2-3 weeks at ambient temperature.
Collapse
Affiliation(s)
- Dariush Khademi Shurmasti
- Department of Agriculture‐Food Science & Technology, Savadkooh BranchIslamic Azad UniversitySavadkoohIran
| | - Pezhman Riazi Kermani
- Department of Agriculture‐Food Science & Technology, Savadkooh BranchIslamic Azad UniversitySavadkoohIran
| | - Maryam Sarvarian
- Department of Agriculture‐Food Science & Technology, Savadkooh BranchIslamic Azad UniversitySavadkoohIran
| | | |
Collapse
|
9
|
Madhappan S, Kim SH, Huh P, Jung YS, Kim SC. Dramatic reduction of toxicity of Poly(hexamethylene guanidine) disinfectant by charge neutralization. ENVIRONMENTAL RESEARCH 2023; 231:116172. [PMID: 37201704 DOI: 10.1016/j.envres.2023.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The current study aimed to investigate the toxicity of positively charged polyhexamethylene guanidine (PHMG) polymer and its complexation with different anionic natural polymers such as k-carrageenan (kCG), chondroitin sulfate (CS), sodium alginate (Alg.Na), polystyrene sulfonate sodium (PSS.Na) and hydrolyzed pectin (HP). The physicochemical properties of the synthesized PHMG and its combination with anionic polyelectrolyte complexes (PECs) namely PHMG:PECs were characterized using zeta potential, XPS, FTIR, and TG analysis. Furthermore, cytotoxic behavior of the PHMG and PHMG:PECs, respectively, were evaluated using human liver cancer cell line (HepG2). The study results revealed that the PHMG alone had slightly higher cytotoxicity to the HepG2 cells than the prepared polyelectrolyte complexes such as PHMG:PECs. The PHMG:PECs showed a significant reduction of cytotoxicity to the HepG2 cells than the pristine PHMG alone. A reduction of PHMG toxicity was observed may be due to the facile formation of complexation between the positively charged PHMG and negatively charged anionic natural polymers such as kCG, CS, Alg. Na, PSS.Na and HP, respectively, via charge balance or neutralization. The experimental results indicate that the suggested method might significantly lower PHMG toxicity while improving biocompatibility.
Collapse
Affiliation(s)
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy,Research Institute for Drug Development, Pusan National University, Geumjeong-gu, Busan-46241, Republic of Korea
| | - Pilho Huh
- Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan-46241, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy,Research Institute for Drug Development, Pusan National University, Geumjeong-gu, Busan-46241, Republic of Korea.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan- 38544, Republic of Korea.
| |
Collapse
|
10
|
Gierszewska M, Jakubowska E, Richert A. The adenine-modified edible chitosan films containing choline chloride and citric acid mixture. Sci Rep 2023; 13:12629. [PMID: 37537220 PMCID: PMC10400631 DOI: 10.1038/s41598-023-39870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
A series of biopolymeric chitosan-based (Ch) films were prepared with choline chloride and citric acid plasticizer (deep eutectic solvent, DES). An effect of adenine (A, vitamin B4) addition on the functional properties of these films was evaluated. Several physicochemical and mechanical properties were tested: Fourier-transformed infrared spectra proved DES's plasticizing and crosslinking effect, while scanning electron microscopy and atomic force microscopy techniques confirmed the possible phase separation after adenine addition. These changes affected the mechanical characteristics and the water vapor and oxygen permeability. The prepared materials are not water soluble because the CA acts as a crosslinker. The adenine addition on antioxidative and antimicrobial properties was also checked. It was found that Ch-DES materials with A exhibit improved antioxidative properties (55.8-66.1% of H2O2 scavenging activity) in contrast to the pristine chitosan-DES material (51.1% of H2O2 scavenging activity), while the material is still non-mutagenic (lack of growth of Salmonella typhimurium) and possesses antimicrobial features (no E. coli observed for all the tested films and inhibition zones noted for S. aureus). The mentioned properties, reduced oxygen transmission (1.6-2.1 g m-2 h-1), and mechanical characteristics within the range of typical food packaging plastics proved the potential of Ch-DES-A films in the packaging sector. Moreover, the antioxidative properties, usage of substrates being allowed as food additives, and the presence of adenine create the advantage of the Ch-DES-A materials as edible coatings, being also a source of Vitamin B4.
Collapse
Affiliation(s)
- Magdalena Gierszewska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100, Toruń, Poland.
| | - Ewelina Jakubowska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100, Toruń, Poland
| | - Agnieszka Richert
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 1 Lwowska Street, 87-100, Toruń, Poland
| |
Collapse
|
11
|
Kulikova MV, Ivantsov MI, Sotnikova AE, Samoilov VO. Catalytic Design of Matrix-Isolated Ni-Polymer Composites for Methane Catalytic Decomposition. Polymers (Basel) 2023; 15:polym15112534. [PMID: 37299333 DOI: 10.3390/polym15112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Targeted synthesis of C/composite Ni-based material was carried out by the method of matrix isolation. The composite was formed with regard to the features of the reaction of catalytic decomposition of methane. The morphology and physicochemical properties of these materials have been characterized using a number of methods: elemental analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, temperature programmed reduction (TPR-H2), specific surface areas (SSA), thermogravimetric analysis, and differential scanning calorimetry (TGA/DSC). It was shown by FTIR spectroscopy that nickel ions are immobilized on the polymer molecule of polyvinyl alcohol, and during heat treatment, polycondensation sites are formed on the surface of the polymer molecule. By the method of Raman spectroscopy, it was shown that already at a temperature of 250 °C, a developed conjugation system with sp2-hybridized carbon atoms begins to form. The SSA method shows that the formation of the composite material resulted in a matrix with a developed specific surface area of 20 to 214 m2/g. The XRD method shows that nanoparticles are essentially characterized by Ni, NiO reflexes. The composite material was established by microscopy methods to be a layered structure with uniformly distributed nickel-containing particles 5-10 nm in size. The XPS method determined that metallic nickel was present on the surface of the material. A high specific activity was found in the process of catalytic decomposition of methane-from 0.9 to 1.4 gH2/gcat/h, XCH4, from 33 to 45% at a reaction temperature of 750 °C without the stage of catalyst preliminary activation. During the reaction, the formation of multi-walled carbon nanotubes occurs.
Collapse
Affiliation(s)
- Mayya V Kulikova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
| | - Mikhail I Ivantsov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
| | - Anastasia E Sotnikova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
| | - Vadim O Samoilov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
| |
Collapse
|
12
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
13
|
Preparation of composite films composed of polyvinyl alcohol, shellac and carboxymethyl chitosan-CuO nanoparticles and their application in food preservation. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Wardhono EY, Pinem MP, Susilo S, Siom BJ, Sudrajad A, Pramono A, Meliana Y, Guénin E. Modification of Physio-Mechanical Properties of Chitosan-Based Films via Physical Treatment Approach. Polymers (Basel) 2022; 14:polym14235216. [PMID: 36501610 PMCID: PMC9740446 DOI: 10.3390/polym14235216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
The premise of this work is the modification of the properties of chitosan-based film for possible use in food packaging applications. The biofilm was prepared via thermal and mechanical treatment through blending polymers with chitosan using Polyvinyl Alcohol (PVA) and loading different types of chemical agents, i.e., citric acid (CA), succinic acid (SA), and tetraethoxysilane (TEOS). The modification was carried out under high-speed homogenization at elevated temperature to induce physical cross-linkage of chitosan polymer chains without a catalyst. The findings showed that PVA improved the chitosan films' Tensile strength (TS) and elongation at break (Eb). The presence of chemicals caused an increase in the film strength for all samples prepared, in which a 5% w/w of chemical in the optimum composition CS/PVA (75/25) provided the maximum strength, namely, 33.9 MPa, 44.0 MPa, and 41.9 MPa, for CA-5, SA-5, and TEOS-5, respectively. The chemical agents also increased the water contact angles for all tested films, indicating that they promoted hydrophobicity. The chemical structure analysis showed that, by incorporating three types of chemical agents into the CS/PVA blend films, no additional spectral bands were found, indicating that no covalent bonds were formed. The thermal properties showed enhancement in melting peak and degradation temperature of the blend films, compared to those without chemical agents at the optimum composition. The X-ray diffraction patterns exhibited that PVA led to an increasing crystallization tendency in the blend films. The morphological observation proved that no irregularities were detected in CS/PVA blend films, representing high compatibility with both polymers.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Faculty of Chemical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Laboratorium Polimer dan Komposit, Centre of Excellent, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Correspondence: ; Tel.: +62-254-395-502
| | - Mekro Permana Pinem
- Laboratorium Polimer dan Komposit, Centre of Excellent, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Sidik Susilo
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Bintang Junita Siom
- Faculty of Chemical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Agung Sudrajad
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Agus Pramono
- Faculty of Metallurgical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Yenny Meliana
- Research Center for Chemistry, National Research and Innovation Agency, BRIN, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Université de Technologie de Compiègne, rue du Dr Schweitzer, 60200 Compiègne, France
| |
Collapse
|
15
|
Kedang YI, Priyangga A, Atmaja L, Santoso M. Characteristics and performance studies of a composite polymer electrolyte membrane based on chitosan/glycerol-sulfosuccinic acid modified montmorillonite clay. RSC Adv 2022; 12:30742-30753. [PMID: 36349150 PMCID: PMC9606734 DOI: 10.1039/d2ra04560e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
In this study, chitosan (CS) doped sulphosuccinic acid (SSA)-glycerol (Gly) and modified montmorillonite clay (MMT) were successfully fabricated. The membranes were prepared using the solution casting method. Analysis of morphology and topography using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the composite membrane with 3 wt% MMT filler, namely CS/MMT-1, possessed the most adequate surface roughness compared to the other fabricated membranes. Furthermore, mechanical characterization of the CS/MMT-1 composite membrane showed that the membrane achieved satisfactory mechanical strength with a value of 39.23 MPa. Proton conductivity of the composite membranes increased as the temperature was increased. The proton conductivity of the CS/MMT-1 composite membrane increased from 1.75 × 10-2 S cm-1 at 25 °C up to 3.57 × 10-2 S cm-1 at 80 °C. The CS/MMT-1 composite membrane also exhibited a methanol permeability value that was significantly lower than that of pristine CS, namely 1.22 × 10-7 cm2 s-1 and 12.49 × 10-7 cm2 s-1, respectively. The results of this study show that the fabricated composite membrane can be used as an alternative polymer electrolyte membrane (PEM) for DMFC applications.
Collapse
Affiliation(s)
- Yohana Ivana Kedang
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
- Department of Chemistry, Agriculture Faculty, Universitas Timor Kefamenanu 85613 Indonesia
| | - Arif Priyangga
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Lukman Atmaja
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Mardi Santoso
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| |
Collapse
|
16
|
Prema D, Balashanmugam P, Kumar J, Venkatasubbu GD. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Pan L, Li C, Wang Z, Yang L, Zhang L. Preparation of an antibacterial dressing for simultaneous delivery of polyhexamethylene biguanide and platelet-rich plasma, and evaluation of the dressing's ability to promote infected skin repair. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Ismail AM, Nasr RA. Structural characterization of
PVDF
/
PVA
polymer blend film doped with different concentration of
NiO NPs
for photocatalytic degradation of malachite green dye under visible light. J Appl Polym Sci 2022. [DOI: 10.1002/app.51847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Rabab A. Nasr
- Water Pollution Research Department National Research Centre Giza Egypt
| |
Collapse
|
19
|
Kandil H, Nour SA, Amin A. Promising antimicrobial material based on hyperbranched polyacrylic acid for biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2058942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Heba Kandil
- Polymers and Pigments department, Chemical industries research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| | - Shaimaa A. Nour
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| | - Amal Amin
- Polymers and Pigments department, Chemical industries research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| |
Collapse
|
20
|
Barbălată-Mândru M, Serbezeanu D, Butnaru M, Rîmbu CM, Enache AA, Aflori M. Poly(vinyl alcohol)/Plant Extracts Films: Preparation, Surface Characterization and Antibacterial Studies against Gram Positive and Gram Negative Bacteria. MATERIALS 2022; 15:ma15072493. [PMID: 35407829 PMCID: PMC9000143 DOI: 10.3390/ma15072493] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
In this study, we aim to obtain biomaterials with antibacterial properties by combining poly(vinyl alcohol) with the extracts obtained from various selected plants from Romania. Natural herbal extracts of freshly picked flowers of the lavender plant (Lavandula angustifolia) and leaves of the peppermint plant (Mentha piperita), hemp plant (Cannabis sativa L.), verbena plant (Verbena officinalis) and sage plant (Salvia officinalis folium) were selected after an intensive analyzing of diverse medicinal plants often used as antibacterial and healing agents from the country flora. The plant extracts were characterized by different methods such as totals of phenols and flavonoids content and UV-is spectroscopy. The highest amounts of the total phenolic and flavonoid contents, respectively, were recorded for Salvia officinalis. Moreover, the obtained films of poly(vinyl alcohol) (PVA) loaded with plant extracts were studied concerning the surface properties and their antibacterial or cytotoxicity activity. The Attenuated Total Reflection Fourier Transform Infrared analysis described the successfully incorporation of each plant extract in the poly(vinyl alcohol) matrix, while the profilometry demonstrated the enhanced surface properties. The results showed that the plant extracts conferred significant antibacterial effects to films toward Staphylococcus aureus and Escherichia coli and are not toxic against fibroblastic cells from the rabbit.
Collapse
Affiliation(s)
- Mihaela Barbălată-Mândru
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. GhicaVoda, 700487 Iasi, Romania; (M.B.-M.); (M.B.)
| | - Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. GhicaVoda, 700487 Iasi, Romania; (M.B.-M.); (M.B.)
- Correspondence: (D.S.); (M.A.)
| | - Maria Butnaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. GhicaVoda, 700487 Iasi, Romania; (M.B.-M.); (M.B.)
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13, Kogalniceanu Street, 700115 Iasi, Romania
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | | | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. GhicaVoda, 700487 Iasi, Romania; (M.B.-M.); (M.B.)
- Correspondence: (D.S.); (M.A.)
| |
Collapse
|
21
|
Goodarzi R, Ghanbari H, Sarpoolaky H. An Eco‐Friendly Polyvinyl Alcohol/Graphene Oxide‐Based Hydrogel as a Methylene Blue Adsorbent. ChemistrySelect 2022. [DOI: 10.1002/slct.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reyhaneh Goodarzi
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| | - Hajar Ghanbari
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| | - Hossein Sarpoolaky
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| |
Collapse
|
22
|
Lou CW, Lin MC, Huang CH, Lai MF, Shiu BC, Lin JH. Preparation of Needleless Electrospinning Polyvinyl Alcohol/Water-Soluble Chitosan Nanofibrous Membranes: Antibacterial Property and Filter Efficiency. Polymers (Basel) 2022; 14:polym14051054. [PMID: 35267878 PMCID: PMC8915060 DOI: 10.3390/polym14051054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Electrospinning is an efficient method of producing nanofibers out of polymers that shows a great potential for the filtration territory. Featuring water-soluble chitosan (WS-CS), a low-pollution process and a self-made needleless machine, PVA/WS-CS nanofibrous membranes were prepared and evaluated for nanofiber diameter, bacteriostatic property, filtration efficiency, pressure drop, and quality factor. Test results indicate that the minimal fiber diameter was 216.58 ± 58.15 nm. Regardless of the WS-CS concentration, all of the PVA/WS-CS nanofibrous membranes attained a high porosity and a high water vapor transmission rate (WVTR), with a pore size of 12.06–22.48 nm. Moreover, the membranes also exhibit bacteriostatic efficacy against Staphylococcus aureus, an optimal quality factor of 0.0825 Pa−1, and a filtration efficiency as high as 97.0%, that is 72.5% higher than that of common masks.
Collapse
Affiliation(s)
- Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China;
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Meng-Chen Lin
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| | - Chen-Hung Huang
- Department of Aerospace and Systems Engineering, Feng Chia University, Taichung City 407102, Taiwan
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| | - Mei-Feng Lai
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
| | - Jia-Horng Lin
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| |
Collapse
|
23
|
Sadiq NM, Aziz SB, Kadir MFZ. Development of Flexible Plasticized Ion Conducting Polymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan (CS) with High Ion Transport Parameters Close to Gel Based Electrolytes. Gels 2022; 8:153. [PMID: 35323266 PMCID: PMC8954201 DOI: 10.3390/gels8030153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, flexible films of polyvinyl alcohol (PVA): chitosan (CS) solid polymer blend electrolytes (PBEs) with high ion transport property close enough to gel based electrolytes were prepared with the aid of casting methodology. Glycerol (GL) as a plasticizer and sodium bromide (NaBr) as an ionic source provider are added to PBEs. The flexible films have been examined for their structural and electrical properties. The GL content changed the brittle and solid behavior of the films to a soft manner. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) methods were used to examine the structural behavior of the electrolyte films. X-ray diffraction investigation revealed that the crystalline character of PVA:CS:NaBr declined with increasing GL concentration. The FTIR investigation hypothesized the interaction between polymer mix salt systems and added plasticizer. Infrared (FTIR) band shifts and fluctuations in intensity have been found. The ion transport characteristics such as mobility, carrier density, and diffusion were successfully calculated using the experimental impedance data that had been fitted with EEC components and dielectric parameters. CS:PVA at ambient temperature has the highest ionic conductivity of 3.8 × 10 S/cm for 35 wt.% of NaBr loaded with 55 wt.% of GL. The high ionic conductivity and improved transport properties revealed the suitableness of the films for energy storage device applications. The dielectric constant and dielectric loss were higher at lower frequencies. The relaxation nature of the samples was investigated using loss tangent and electric modulus plots. The peak detected in the spectra of tanδ and M" plots and the distribution of data points are asymmetric besides the peak positions. The movements of ions are not free from the polymer chain dynamics due to viscoelastic relaxation being dominant. The distorted arcs in the Argand plot have confirmed the viscoelastic relaxation in all the prepared films.
Collapse
Affiliation(s)
- Niyaz M. Sadiq
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
24
|
Massey S, Iqbal F, Rehman AU, Iqbal MS, Iram F. Preparation, characterization and biological evaluation of silver nanoparticles and drug loaded composites for wound dressings formed from Lallemantia royleana seeds' mucilage. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:481-498. [PMID: 34651560 DOI: 10.1080/09205063.2021.1992590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After an injury, the wounds need to be covered with a dressing. Lack of absorptive potential and sticking of dressing with the wound causes pain and slows the healing process. The aim of this study was to develop wound dressings having more absorptive potential and less sticking with the wound. The hemicelluloses from Lallemantia royleana seeds possess desirable properties for a wound dressing. The hemicellulose was blended with chitosan/chitin and glutaraldehyde to enhance the absorptive properties of the hemicellulose through cross-linking. Two types of formulations incorporating silver nanoparticles and ciprofloxacin were prepared. The composites were characterized by elemental analysis, Fourier-transform infrared spectroscopy and scanning electron microscopy, and evaluated for their antibacterial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The dressings were subjected to in vivo studies on Albino rats. The dressings were found to be porous and the silver nanoparticles and drug particles were found to be uniformly distributed in the polymeric matrix. The composite containing ciprofloxacin released the drug in a sustained manner for 14-16 days. From extrapolation of the data, it was discovered that the formulation would release around 80% of ciprofloxacin in about two weeks. Silver-ciprofloxacin nano-composites exhibited comparable activity (zone of inhibition 19-30 mm) against E. coli to that of ciprofloxacin (standard, 21-35 mm) and relatively lower activity in case of S. aureus (zone of inhabitation 11-17 mm). The dressings did not stick to the wound site and the site remained wet during the healing process. Thus the use of hemicellulose from L. royleana seeds proved to be beneficial for preparing wound dressings with improved properties because of having high swelling index, porosity and spongy texture.
Collapse
Affiliation(s)
- Shazma Massey
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Farah Iqbal
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Atta Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Saeed Iqbal
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Fozia Iram
- Department of Chemistry, LCW University, Lahore, Pakistan
| |
Collapse
|
25
|
Amorim LFA, Mouro C, Riool M, Gouveia IC. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers (Basel) 2022; 14:polym14020315. [PMID: 35054720 PMCID: PMC8781631 DOI: 10.3390/polym14020315] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, food packaging systems have shifted from a passive to an active role in which the incorporation of antimicrobial compounds into biopolymers can promote a sustainable way to reduce food spoilage and its environmental impact. Accordingly, composite materials based on oxidized-bacterial cellulose (BC) and poly(vinyl alcohol)-chitosan (PVA-CH) nanofibers were produced by needleless electrospinning and functionalized with the bacterial pigment prodigiosin (PG). Two strategies were explored, in the first approach PG was incorporated in the electrospun PVA-CH layer, and TEMPO-oxidized BC was the substrate for nanofibers deposition (BC/PVA-CH_PG composite). In the second approach, TEMPO-oxidized BC was functionalized with PG, and afterward, the PVA-CH layer was electrospun (BC_PG/PVA-CH composite). The double-layer composites obtained were characterized and the nanofibrous layers displayed smooth fibers with average diameters of 139.63 ± 65.52 nm and 140.17 ± 57.04 nm, with and without pigment incorporation, respectively. FTIR-ATR analysis confirmed BC oxidation and revealed increased intensity at specific wavelengths, after pigment incorporation. Moreover, the moderate hydrophilic behavior, as well as the high porosity exhibited by each layer, remained mostly unaffected after PG incorporation. The composites’ mechanical performance and the water vapor transmission rate (WVTR) evaluation indicated the suitability of the materials for certain food packaging solutions, especially for fresh products. Additionally, the red color provided by the bacterial pigment PG on the external surface of a food packaging material is also a desirable effect, to attract the consumers’ attention, creating a multifunctional material. Furthermore, the antimicrobial activity was evaluated and, PVA-CH_PG, and BC_PG layers exhibited the highest antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the fabricated composites can be considered for application in active food packaging, owing to PG antimicrobial potential, to prevent foodborne pathogens (with PG incorporated into the inner layer of the food packaging material, BC/PVA-CH_PG composite), but also to prevent external contamination, by tackling the exterior of food packaging materials (with PG added to the outer layer, BC_PG/PVA-CH composite).
Collapse
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Isabel C. Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
- Correspondence: ; Tel.: +351-27-531-9825
| |
Collapse
|
26
|
Chitosan-based films enriched by caffeic acid with poly(ethylene glycol) - A physicochemical and antibacterial properties evaluation. Int J Biol Macromol 2021; 192:728-735. [PMID: 34656535 DOI: 10.1016/j.ijbiomac.2021.10.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
In this work, chitosan/caffeic acid mixtures in the weight ratios of 80/20 and 50/50 were used to obtain thin films enriched with poly(ethylene glycol). It was hypothesized that the presence of caffeic acid indicates the antibacterial properties of the materials (i) and that poly(ethylene glycol) acts as a films modifier (ii). The results showed that by poly(ethylene glycol) addition, the surface free energy as well as mechanical and thermal properties were improved. Moreover, water vapor permeability was observed. All the tested materials showed antioxidant properties in the range of approximately 90%. They also showed antibacterial effectiveness against both Gram-positive and Gram-negative bacteria. The most appropriate material for the application as packaging was composed of chitosan and caffeic acid mixed in a 50/50 weight ratio with 20% PEG addition.
Collapse
|
27
|
Serbezeanu D, Bercea M, Butnaru M, Enache AA, Rîmbu CM, Vlad‐Bubulac T. Development of histamine reinforced poly(vinyl alcohol)/chitosan blended films for potential biomedical applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Diana Serbezeanu
- Department of Polycondensation and Thermally Stable Polymers “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Maria Bercea
- Department of Natural Polymers, Bioactive and Biocompatible Materials “Grigore T. Popa” University of Medicine and Pharmacy Iasi Romania
| | - Maria Butnaru
- Department of Natural Polymers, Bioactive and Biocompatible Materials “Grigore T. Popa” University of Medicine and Pharmacy Iasi Romania
| | | | - Cristina Mihaela Rîmbu
- Department of Public Health Faculty of Veterinary Medicine “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine Iasi Romania
| | - Tăchiță Vlad‐Bubulac
- Department of Polycondensation and Thermally Stable Polymers “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| |
Collapse
|
28
|
Abdullah AM, Aziz SB, Saeed SR. Structural and electrical properties of polyvinyl alcohol (PVA):Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
29
|
Palmieri V, Niccolini B, Perini G, Augello A, De Maio F, Gervasoni J, Primiano A, Delogu G, De Spirito M, Papi M. In situ N-acetylcysteine release from polyvinyl alcohol film for moisture-activated food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Ali H, Tiama TM, Ismail AM. New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films. Int J Biol Macromol 2021; 186:278-288. [PMID: 34246674 DOI: 10.1016/j.ijbiomac.2021.07.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
The development of composite films with enhanced antibacterial and dye decolorization properties for water treatment has attracted a great attention. In this study, nickel oxide/chitosan/polyvinyl alcohol nanocomposite films containing different weight percentage of NiO nanoparticles with a dual functionality, removal of toxic dye and antibacterial properties, were prepared. Methyl orange (MO) was selected as a target pollutant. Additionally, the antimicrobial activity of the films against two Gram positive bacteria (Staphylococcus aureus and Bacillus cereus) and two Gram negative bacteria (Escherichia coli and Salmonella Typhimurium) was studied. The prepared samples were characterized by XRD, HRTEM, FESEM, ATR-FTIR, UV-Vis spectroscopy, and dielectric measurements. The morphological examination proved that the nanocomposite film has more porous structure compared to the unmodified chitosan/PVA. The antimicrobial tests indicated that the modified chitosan/PVA films have higher activity than pure chitosan/PVA toward all the tested pathogenic bacteria. The impact of the NiO amount (0.5, 1.5, 3, and 5 wt%), contact time (0-150 min), and adsorbent dose (40, 80, and 100 mg) on the removal of MO was studied. Dye adsorption results proved that the incorporation of 5 wt% NiO led to more than 2 fold increase in the dye removal percentage in comparison with the unmodified PVA/chitosan film.
Collapse
Affiliation(s)
- Heba Ali
- Physical Chemistry Department, National Research Centre, 33 El Bohouth Street, Dokki, 12622 Giza, Egypt.
| | - Taha M Tiama
- Basic Science Department, October High Institute for Engineering & Technology, Misr University for Science and Technology, 6th October City, Cairo, Egypt
| | - A M Ismail
- Spectroscopy Department, National Research Centre, 33 El Bohouth Street, Dokki, 12622 Giza, Egypt
| |
Collapse
|
31
|
Erim B, Ciğeroğlu Z, Bayramoğlu M. Green synthesis of TiO2/GO/chitosan by using leaf extract of Olea europaea as a highly efficient photocatalyst for the degradation of cefixime trihydrate under UV-A radiation exposure: An optimization study with d-optimal design. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Biodegradable Antimicrobial Films for Food Packaging: Effect of Antimicrobials on Degradation. Foods 2021; 10:foods10061256. [PMID: 34205937 PMCID: PMC8228111 DOI: 10.3390/foods10061256] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
The environmental problem generated by the massive consumption of plastics makes necessary the developing of biodegradable antimicrobial materials that can extend food shelf-life without having a negative impact on the environment. The current situation regarding the availability of biodegradable food packaging materials has been analysed, as well as different studies where antimicrobial compounds have been incorporated into the polymer matrix to control the growth of pathogenic or spoilage bacteria. Thus, the antimicrobial activity of active films based on different biodegradable polymers and antimicrobial compounds has been discussed. Likewise, relevant information on biodegradation studies carried out with different biopolymers in different environments (compost, soil, aquatic), and the effect of some antimicrobials on this behavior, are reviewed. In most of the studies, no relevant effect of the incorporated antimicrobials on the degradation of the polymer were observed, but some antimicrobials can delay the process. The changes in biodegradation pattern due to the presence of the antimicrobial are attributed to its influence on the microorganism population responsible for the process. More studies are required to know the specific influence of the antimicrobial compounds on the biodegradation behavior of polymers in different environments. No studies have been carried out or marine media to this end.
Collapse
|
33
|
Synthesis and Characterization of a New Nanocomposite Film Based on Polyvinyl Alcohol Polymer and Nitro Blue Tetrazolium Dye as a Low Radiation Dosimeter in Medical Diagnostics Application. Polymers (Basel) 2021; 13:polym13111815. [PMID: 34072823 PMCID: PMC8197916 DOI: 10.3390/polym13111815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Dosimetry is a field of increasing importance in diagnostic radiology. There has been a realization among healthcare professionals that the dose of radiation received by patients via modern medical X-ray examinations could induce acute damage to the skin and eyes. The present study highlights the synthesis of polyvinyl alcohol/nitro blue tetrazolium nanocomposite films (PVA/NBT) for radiation detection depending on chromic, optical, chemical and morphologic changes. First, we synthesized the nanocomposite film-based PVA doped with NBT and the different parameters of the preparation procedure were optimized. Then The films were exposed to different low X-ray doses on the scale of mGy level (0, 2, 4, 10 and 20 mGy). The sensitivity and the performance of the made composite films were evaluated via different characterization methods. Indeed, the response curve based on UV-Vis absorptions revealed a linear increase in absorbance with increased radiation doses (R = 0.998). FTIR analysis showed a clear chemical modification in recorded spectra after irradiation. X-ray diffraction assessment revealed clear structural changes in crystallinity after ionization treatment. SEM analysis showed a clear morphological modification of PVA/NBT films after irradiation. In addition, the prepared PVA/NBT films exhibited excellent pre- and post-irradiation stability in dark and light. Finally, the quantitative colorimetry study confirmed the performance of the prepared films and the different colorimetric coordinates, the total color difference (∆E) and the color strength (K/S) showed a linear increase with increasing X-ray doses. The made nanocomposite PVA/NBT film might offer promising potential for an effective highly sensitive medical dosimeter applied for very low doses in X-ray diagnostic radiology.
Collapse
|
34
|
Antimicrobial and Wound Healing Properties of FeO Fabricated Chitosan/PVA Nanocomposite Sponge. Antibiotics (Basel) 2021; 10:antibiotics10050524. [PMID: 34063621 PMCID: PMC8147619 DOI: 10.3390/antibiotics10050524] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic and anemia-associated diabetic wounds increase the considerable morbidity and mortality in people, as reported by clinical studies. However, no anemia-associated diabetic wound dressing materials have been developed until now. Hence, this study aimed to develop a nanocomposite scaffold composed of chitosan (CS), poly (vinyl alcohol) (PVA), and phytogenic iron oxide nanoparticles (FeO NPs), for accelerated anemia-associated diabetic wound healing. The aqueous leaves extract of Pinus densiflora (PD) was utilized for the synthesis of iron oxide nanoparticles (FeO NPs). TEM and elemental analysis confirmed smaller size PD-FeO NPs (<50 nm) synthesis with the combination of iron and oxide. In addition, in vitro biological studies displayed the moderate antioxidant, antidiabetic activities, and considerable antibacterial activity of PD-FeO NPs. Further, the different concentrations of PD-FeO NPs (0.01, 0.03, and 0.05%) incorporated CS/PVA nanocomposites sponges were developed by the freeze-drying method. The porous structured morphology and the presence of PD-FeO NPs were observed under FE-SEM. Among nanocomposite sponges, PD-FeO NPs (0.01%) incorporated CS/PVA sponges were further chosen for the in vitro wound-healing assay, based on the porous and water sorption nature. Furthermore, the in vitro wound-healing assay revealed that PD-FeO NPs (0.01%) incorporated CS/PVA has significantly increased the cell proliferation in HEK293 cells. In conclusion, the CS/PVA-PD-FeO NPs (0.01%) sponge would be recommended for diabetic wound dressing after a detailed in vivo evaluation.
Collapse
|
35
|
Olewnik-Kruszkowska E, Gierszewska M, Richert A, Grabska-Zielińska S, Rudawska A, Bouaziz M. Antibacterial Films Based on Polylactide with the Addition of Quercetin and Poly(Ethylene Glycol). MATERIALS 2021; 14:ma14071643. [PMID: 33801625 PMCID: PMC8036468 DOI: 10.3390/ma14071643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
A series of new films with antibacterial properties has been obtained by means of solvent casting method. Biodegradable materials including polylactide (PLA), quercetin (Q) acting as an antibacterial compound and polyethylene glycol (PEG) acting as a plasticizer have been used in the process. The effect of quercetin as well as the amount of PEG on the structural, thermal, mechanical and antibacterial properties of the obtained materials has been determined. It was found that an addition of quercetin significantly influences thermal stability. It should be stressed that samples containing the studied flavonoid are characterized by a higher Young modulus and elongation at break than materials consisting only of PLA and PEG. Moreover, the introduction of 1% of quercetin grants antibacterial properties to the new materials. Recorded results showed that the amount of plasticizer did not influence the antibacterial properties; it does, however, cause changes in physicochemical properties of the obtained materials. These results prove that quercetin could be used as an antibacterial compound and simultaneously improve mechanical and thermal properties of polylactide-based films.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
- Correspondence: ; Tel.: +48-56-611-2210
| | - Magdalena Gierszewska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| | - Agnieszka Richert
- Faculty of Biological and Veterinary Sciences, Chair of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland;
| | - Sylwia Grabska-Zielińska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| | - Anna Rudawska
- Faculty of Mechanical Engineering, Department of Production Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Mohamed Bouaziz
- Electrochemistry and Environmental Laboratory, National Engineering School of Sfax, University of Sfax, BP1173, Sfax 3038, Tunisia;
| |
Collapse
|
36
|
Olewnik-Kruszkowska E, Gierszewska M, Grabska-Zielińska S, Skopińska-Wiśniewska J, Jakubowska E. Examining the Impact of Squaric Acid as a Crosslinking Agent on the Properties of Chitosan-Based Films. Int J Mol Sci 2021; 22:3329. [PMID: 33805101 PMCID: PMC8037701 DOI: 10.3390/ijms22073329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/30/2022] Open
Abstract
Hydrogels based on chitosan are very versatile materials which can be used for tissue engineering as well as in controlled drug delivery systems. One of the methods for obtaining a chitosan-based hydrogel is crosslinking by applying different components. The objective of the present study was to obtain a series of new crosslinked chitosan-based films by means of solvent casting method. Squaric acid-3,4-dihydroxy-3-cyclobutene-1,2-dione-was used as a safe crosslinking agent. The effect of the squaric acid on the structural, mechanical, thermal, and swelling properties of the formed films was determined. It was established that the addition of the squaric acid significantly improved Young's modulus, tensile strength, and thermal stability of the obtained materials. Moreover, it should be stressed that the samples consisting of chitosan and squaric acid were characterized by a higher swelling than pure chitosan. The detailed characterization proved that squaric acid could be used as a new effective crosslinking agent.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (S.G.-Z.); (E.J.)
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (S.G.-Z.); (E.J.)
| | - Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (S.G.-Z.); (E.J.)
| | - Joanna Skopińska-Wiśniewska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Ewelina Jakubowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (S.G.-Z.); (E.J.)
| |
Collapse
|
37
|
Li Z, Xu W, Wang X, Jiang W, Ma X, Wang F, Zhang C, Ren C. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110253] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
39
|
Menazea A, El-Newehy MH, Thamer BM, El-Naggar ME. Preparation of antibacterial film-based biopolymer embedded with vanadium oxide nanoparticles using one-pot laser ablation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Kollu NV, LaJeunesse DR. Cell Rupture and Morphogenesis Control of the Dimorphic Yeast Candida albicans by Nanostructured Surfaces. ACS OMEGA 2021; 6:1361-1369. [PMID: 33490795 PMCID: PMC7818643 DOI: 10.1021/acsomega.0c04980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Nanostructured surfaces control microbial biofilm formation by killing mechanically via surface architecture. However, the interactions between nanostructured surfaces (NSS) and cellular fungi have not been thoroughly investigated and the application of NSS as a means of controlling fungal biofilms is uncertain. Cellular yeast such as Candida albicans are structurally and biologically distinct from prokaryotic microbes and therefore are predicted to react differently to nanostructured surfaces. The dimorphic opportunistic fungal pathogen, C. albicans, is responsible for most cases of invasive candidiasis and is a serious health concern due to the rapid increase of drug resistance strains. In this paper, we show that the nanostructured surfaces from a cicada wing alter C. albicans' viability, biofilm formation, adhesion, and morphogenesis through physical contact. However, the fungal cell response to the NSS suggests that nanoscale mechanical interactions impact C. albicans differently than prokaryotic microbes. This study informs on the use of nanoscale architecture for the control of eukaryotic biofilm formation and illustrates some potential caveats with the application of NSS as an antimicrobial means.
Collapse
Affiliation(s)
- Naga Venkatesh Kollu
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27401, United States
| | - Dennis R. LaJeunesse
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
41
|
Tarach I, Olewnik-Kruszkowska E, Richert A, Gierszewska M, Rudawska A. Influence of Tea Tree Essential Oil and Poly(ethylene glycol) on Antibacterial and Physicochemical Properties of Polylactide-Based Films. MATERIALS 2020; 13:ma13214953. [PMID: 33158150 PMCID: PMC7663608 DOI: 10.3390/ma13214953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022]
Abstract
The aim of the study was to establish the influence of poly(ethylene glycol) (PEG) on the properties of potential biodegradable packaging materials with antibacterial properties, based on polylactide (PLA) and tea tree essential oil (TTO). The obtained polymeric films consisted of PLA, a natural biocide, and tea tree essential oil (5–20 wt. %) was prepared with or without an addition of 5 wt. % PEG. The PLA-based materials have been tested, taking into account their morphology, and their thermal, mechanical and antibacterial properties against Staphylococcus aureus and Escherichia coli. It was established that the introduction of a plasticizer into the PLA–TTO systems leads to an increase in tensile strength, resistance to deformation, as well an increased thermal stability, in comparison to films modified using only TTO. The incorporation of 5 wt. % PEG in the PLA solution containing 5 wt. % TTO allowed us to obtain a material exhibiting a satisfactory antibacterial effect on both groups of representative bacteria. The presented results indicated a beneficial effect of PEG on the antibacterial and functional properties of materials with the addition of TTO.
Collapse
Affiliation(s)
- Iwona Tarach
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Street, 87-100 Toruń, Poland; (I.T.); (M.G.)
| | - Ewa Olewnik-Kruszkowska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Street, 87-100 Toruń, Poland; (I.T.); (M.G.)
- Correspondence: ; Tel.: +48-56-611-2210
| | - Agnieszka Richert
- Chair of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland;
| | - Magdalena Gierszewska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Street, 87-100 Toruń, Poland; (I.T.); (M.G.)
| | - Anna Rudawska
- Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| |
Collapse
|
42
|
Ahmad N, Tayyeb D, Ali I, K. Alruwaili N, Ahmad W, ur Rehman A, Khan AH, Iqbal MS. Development and Characterization of Hemicellulose-Based Films for Antibacterial Wound-Dressing Application. Polymers (Basel) 2020; 12:E548. [PMID: 32138203 PMCID: PMC7183054 DOI: 10.3390/polym12030548] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Hemicelluloses are biopolymers with versatile properties for biomedical applications. Herein, hemicellulose (arabinoxylan)-based antibacterial film dressings were prepared and characterized. Arabinoxylan was isolated from psyllium husk. Blank and gentamicin-loaded films were prepared by the solvent cast method using glycerol as the plasticizer. The appropriate composition of the films was obtained by varying the amounts of arabinoxylan, glycerol, and gentamicin. The films were found to be transparent, smooth, bubble-free, flexible, and easily peelable with 2% to 3% arabinoxylan. They had uniform thickness and swelled up to 60% of their initial size. The mechanical properties and water vapor transmission rate through the films were found to be suitable for wound-dressing application. Fourier transform infrared spectroscopy (FTIR) analysis confirmed drug-film compatibility. In an in vitro release study, more than 85% of the gentamicin was released from the films in 12 h. The antibacterial activities of the gentamicin-loaded films were found to be close to the standard gentamicin solution. The films were found to be cytocompatible in cell viability assay. These results suggested that hemicellulose-based films are promising materials for the dressing of infected wounds.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia
- Department of Pharmacy, Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Danial Tayyeb
- Department of Chemistry, Forman Christian College, Ferozepur Road, Lahore 54600, Pakista
| | - Imran Ali
- Department of Chemistry, Forman Christian College, Ferozepur Road, Lahore 54600, Pakista
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang 11800, Malaysia
| | - Atta ur Rehman
- Department of Pharmacy, Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Abdul Haleem Khan
- Department of Pharmacy, Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Mohammad Saeed Iqbal
- Department of Chemistry, Forman Christian College, Ferozepur Road, Lahore 54600, Pakista
| |
Collapse
|