Liu X, Wu Z, Min Z, Zhang L. Investigation on the Preparation and Performances of Epoxy-Modified Asphalt Binder and Its Mixtures.
MATERIALS (BASEL, SWITZERLAND) 2024;
17:2539. [PMID:
38893800 PMCID:
PMC11173728 DOI:
10.3390/ma17112539]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Epoxy-modified asphalt binder has been widely used in steel deck pavement due to its excellent properties and it is a potential candidate for long life pavements. However, its short reserve time limits its widespread application in pavement engineering. Therefore, this work developed a novel epoxy-modified asphalt binder composed of a laboratory-made curing agent as a solution. Firstly, optimization of preparation temperature of this new material was studied to balance the requirements of enough construction time and the material strength and elongation. The epoxy-modified asphalt binder, prepared at the optimal temperature of 140 °C, had a reserve time exceeding 120 min, whereas the tensile strength and the elongation at failure were 2.22 MPa and 216%, respectively, which satisfied the standard requirements of paving epoxy material well. Secondly, the asphalt mixture property tests demonstrate excellent high-temperature rutting resistance, water stability and low-temperature anti-cracking ability. Additionally, the compatibility and colloidal stability of this epoxy-modified asphalt binder were analyzed in terms of microphase structure. The uniform microphase distribution of this binder showed by the laser confocal microscope observation in both short-term aging case and long-term aging case, indicates the great compatibility between asphalt and epoxy resin during paving process and service life. Furthermore, fatigue tests were conducted to evaluate the long-term durability. The fatigue life of epoxy-modified asphalt mixtures increased by 435%, 427%, 342%, and 276% under the stress ratios of 0.3, 0.4, 0.5, and 0.6, respectively, compared to those of SBS-modified asphalt mixtures. All these results indicate that the new epoxy-modified asphalt material is promising for applications in pavement engineering, especially suitable for long-life road pavement.
Collapse