1
|
O Loughlin J, Herward B, Doherty D, Bhagabati P, Kelleher SM, Fahy S, Freeland B, Rochfort KD, Gaughran J. Bio-based polylactic acid labware as a sustainable alternative for microbial cultivation in life science laboratories. Heliyon 2024; 10:e39846. [PMID: 39539974 PMCID: PMC11558637 DOI: 10.1016/j.heliyon.2024.e39846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Single-use plastics (SUPs) in life science laboratories account for approximately 5.5 million tonnes of waste per year globally. Of SUPs used in life science laboratories, Petri dishes, centrifuge tubes, and inoculation loops are some of the most common. In order to reduce the reliance on petrochemical-based SUPs in the life science research laboratory and minimize the negative environmental impacts associated with SUPs, this research investigates the applicability of polylactic acid (PLA) in single-use labware as a replacement for petrochemical-based plastics. PLA is one of the most well-studied biodegradable plastics that can be produced from sustainable resources. Commercially available PLA was used to 3D print a select range of labware to test the suitability of PLA-based material for routine microbiology work. An injection moulded PLA-based Petri dish was also designed and produced, for increased optical clarity. The biocompatibility was tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) strains of bacteria. The PLA-based labware did not negatively impact the cell growth, viability, and metabolic activity of the bacterial cultures. The injection moulded PLA Petri dish showed a reduced colony forming unit count for the Gram-negative E. coli strain compared to the polystyrene Petri dish, ∼1.5 × 109 CFU/mL and ∼3.0 × 109 CFU/mL respectively, during late-exponential growth. The colony counts were, however, in the same order of magnitude. This observed difference may be due to the internal environment inside the Petri dish, hence the internal O2 concentration, humidity, and temperature during bacterial growth were investigated. This work demonstrates, for the first time, a full successful workflow of bacterial growth using a sustainable bioplastic, providing a pathway to reducing the environmental impacts of SUPs in life science laboratories.
Collapse
Affiliation(s)
- Jennie O Loughlin
- School of Physical Sciences, Dublin City University, D9 Dublin, Ireland
| | - Bevin Herward
- School of Physical Sciences, Dublin City University, D9 Dublin, Ireland
| | - Dylan Doherty
- School of Physical Sciences, Dublin City University, D9 Dublin, Ireland
| | - Purabi Bhagabati
- School of Chemical Sciences, Dublin City University, D9 Dublin, Ireland
| | - Susan M. Kelleher
- School of Chemical Sciences, Dublin City University, D9 Dublin, Ireland
| | - Samantha Fahy
- Office of the Chief Operations Officer, Dublin City University, D9 Dublin, Ireland
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D9 Dublin, Ireland
| | - Keith D. Rochfort
- School of Biotechnology, Dublin City University, D9 Dublin, Ireland
- Life Sciences Institute, Dublin City University, D9 Dublin, Ireland
| | - Jennifer Gaughran
- School of Physical Sciences, Dublin City University, D9 Dublin, Ireland
| |
Collapse
|
2
|
Walsh LJ. Reusable Personal Protective Equipment Viewed Through the Lens of Sustainability. Int Dent J 2024; 74 Suppl 2:S446-S454. [PMID: 39515932 PMCID: PMC11583863 DOI: 10.1016/j.identj.2024.07.1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 11/16/2024] Open
Abstract
From early 2020 the COVID-19 pandemic drove dramatic increases in the production and use of single use disposable masks, respirators and gowns, and highlighted the vulnerability of supply chains for these items. This paper explores the impacts of the rising demands for these single use items through the lens of sustainability, by collating data on the carbon footprint and other impacts, and then discussing challenges, solutions, and future perspectives. Polypropylene and other key synthetic fibre components of these items are not biodegradable, and persist in the environments for prolonged periods generating microplastics as they degrade slowly. Various methods have been shown to allow limited repeated use of surgical masks and respirators, and this has spurred the development of masks and respirators designed for many cycles of reuse. Parallel discussions around gowns reveal that reuseable gowns offer many advantages for performance as well as reduced environmental impact. At the local dental clinic level, those making purchasing decisions should consider impacts of their product choices on the environment. Such impacts occur from manufacture, transport, and disposal of PPE, and from degradation within the environment. Regulators need to encourage use of reuseable items and facilitate this through local guidelines, while at the international level, more work is needed to develop uniform standards for reuseable masks, respirators and gowns.
Collapse
Affiliation(s)
- Laurence J Walsh
- School of Dentistry, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Mousania Z, Kayastha D, Rimmer RA, Atkinson JD. A cradle-to-grave life cycle assessment of the endoscopic sinus surgery considering materials, energy, and waste. Int Forum Allergy Rhinol 2024. [PMID: 39462253 DOI: 10.1002/alr.23474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Operating rooms generate 1.8 million tons of waste annually, or 20%‒30% of the total healthcare waste in the United States. Our objective was to perform a life cycle assessment (LCA) for endoscopic sinus surgeries (ESSs) in order to analyze its environmental impact. METHODS A comprehensive LCA of ESS was performed considering energy, climate, and water use impacts associated with the materials and processes used. It focuses on the ESS performed at a large tertiary academic hospital and then extends the impacts to consider annual US surgeries. The assessment considers end-of-life waste management at both landfills and incinerators. RESULTS Single-use instrument production constitutes 89%‒96% of the total impacts throughout the life cycle of an ESS. Waste-to-energy incineration is shown to be a preferred end-of-life destination, as it recovers much of the input production energy of plastic items, ultimately reducing the input to 36%, although this is done at the expense of higher greenhouse gas emissions. For multi-use items, decontamination dominates environmental impact (>99% of totals), but consideration of reusable items reduces overall energy consumption and global warming potential (GWP) by 25%‒33%. CONCLUSION Single-use items dominate the total environmental impact of ESS. While multi-use items require additional decontamination over their lifetimes, results show that their incorporation reduces energy consumption and GWP by 25%‒33%, demonstrating the clear environmental benefit.
Collapse
Affiliation(s)
- Zeinab Mousania
- Department of Civil, Structural, and Environmental Engineering, State University of New York-University at Buffalo, Buffalo, New York, USA
| | - Darpan Kayastha
- Division of Otolaryngology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ryan A Rimmer
- Division of Otolaryngology, Yale School of Medicine, New Haven, Connecticut, USA
| | - John D Atkinson
- Department of Civil, Structural, and Environmental Engineering, State University of New York-University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Amal R, Devipriya SP. Severe microplastic pollution risks in urban freshwater system post-landfill fire: A case study from Brahmapuram, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124132. [PMID: 38735464 DOI: 10.1016/j.envpol.2024.124132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
To investigate the escalating issue of microplastic (MP), pollution in urban water bodies, this study focuses on the aftermath of the Brahmapuram landfill fire in Kochi, India, analyzing its impact on MP concentrations in nearby freshwater system. The study conducted sampling sessions at the landfill site immediately before and after the fire. Post-fire, findings demonstrated a substantial increase in MP concentrations in surface waters, with levels rising from an average 25793.33 to 44863.33 particles/m³, featuring a notable presence of larger, predominantly black MPs. Sediment samples showed no significant change in MP count, but there was a significant increase in mass concentration. SEM/EDS analysis revealed changes in surface morphology and elemental composition, suggesting thermal degradation. Risk assessment using the Microplastic Pollution Index (MPI) and Risk Quotient (RQ) methods indicated heightened MP pollution risk in surface water post-fire. Hierarchical cluster analysis revealed the landfill's proximity as a significant factor influencing MP characteristics in the aquatic system. The study highlights the escalated challenge of MP pollution in urban water bodies following environmental disasters like landfill fires, underscoring the urgent need for policy and environmental management strategies.
Collapse
Affiliation(s)
- Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, 682022, India
| | | |
Collapse
|
5
|
Guo P, Wang Y, Moghaddamfard P, Meng W, Wu S, Bao Y. Artificial intelligence-empowered collection and characterization of microplastics: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134405. [PMID: 38678715 DOI: 10.1016/j.jhazmat.2024.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Microplastics have been detected from water and soil systems extensively, with increasing evidence indicating their detrimental impacts on human and animal health. Concerns surrounding microplastic pollution have spurred the development of advanced collection and characterization methods for studying the size, abundance, distribution, chemical composition, and environmental impacts. This paper offers a comprehensive review of artificial intelligence (AI)-empowered technologies for the collection and characterization of microplastics. A framework is presented to streamline efforts in utilizing emerging robotics and machine learning technologies for collecting, processing, and characterizing microplastics. The review encompasses a range of AI technologies, delineating their principles, strengths, limitations, representative applications, and technology readiness levels, facilitating the selection of suitable AI technologies for mitigating microplastic pollution. New opportunities for future research and development on integrating robots and machine learning technologies are discussed to facilitate future efforts for mitigating microplastic pollution and advancing AI technologies.
Collapse
Affiliation(s)
- Pengwei Guo
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yuhuan Wang
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Parastoo Moghaddamfard
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Weina Meng
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Shenghua Wu
- Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, AL 36688, United States
| | - Yi Bao
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States.
| |
Collapse
|
6
|
Afonso V, Borges R, Rodrigues B, Barros R, João Bebianno M, Raposo S. Are native microalgae consortia able to remove microplastics from wastewater effluents? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123931. [PMID: 38582186 DOI: 10.1016/j.envpol.2024.123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Wastewater Treatment Plants (WWTPs) are potential sources of microplastics (MPs) in the aquatic environment. This study aimed to investigate the potential of wastewater-native microalgae consortia to remove MPs from the effluent of two different types of WWTPs as a dual-purpose solution for MPs mitigation and biomass production. For that purpose, the occurrence of MPs from two types of WWTP effluents was analysed over one year. MPs were characterized in terms of morphology (microbead, foam, granule, irregular, filament and film), colour and size. The wastewater characterisation was followed by the removal of MP loads, using native microalgae consortia, pre-adapted to the wastewater effluent. Microalgae consortia evolved naturally through four mitigation assays, adapted to seasonal conditions, such as temperature, photoperiod, and wastewater composition. MPs were present in all the effluent samples, ranging from 52 to 233 MP L-1. The characterisation of MPs indicated a predominance of white and transparent particles, with irregular and filament shapes, mainly under 500 μm in size. The μFTIR analysis revealed that 43% of the selected particles were plastic, with a prevalence of polypropylene (PP) (34%) and polyethylene terephthalate (PET) (30 %). In the mitigation experiments, substantial biomass production was achieved (maximum of 2.6 g L-1 (d.w.)), with successful removal of MPs, ranging from 31 ± 25% to 82 ± 13%. These results show that microalgae growth in wastewater effluents efficiently promotes the removal of MPs, reducing this source of contamination in the aquatic environment, while generating valuable biomass. Additionally, the strategy employed, requires minimal control of culture conditions, simplifying the integration of these systems in real-world WWTP facilities for improved wastewater management.
Collapse
Affiliation(s)
- Valdemira Afonso
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Rodrigo Borges
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Brígida Rodrigues
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Raúl Barros
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Maria João Bebianno
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Sara Raposo
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
7
|
Snigdha, Hiloidhari M, Bandyopadhyay S. Environmental footprints of disposable and reusable personal protective equipment ‒ a product life cycle approach for body coveralls. JOURNAL OF CLEANER PRODUCTION 2023; 394:136166. [PMID: 36721728 PMCID: PMC9880867 DOI: 10.1016/j.jclepro.2023.136166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Body coveralls, often made of single-use plastics, are essential Personal Protective Equipment (PPE) and, along with masks, are widely used in healthcare facilities and public spaces in the wake of the recent COVID-19 pandemic. The widespread use of these body coveralls poses a significant threat to terrestrial and aquatic ecosystems, given their polluting nature and disposal frequency. Therefore, it is necessary to promote the adoption of alternatives that increase the safe reusability of PPE clothing and reduce environmental and health hazards. This study presents a comparative Cradle-to-Grave Life Cycle Assessment (LCA) of disposable and reusable PPE body coveralls from a product life cycle perspective. A comprehensive life cycle inventory and LCA framework specific to Indian conditions have been developed through this study. The LCA is performed as per standard protocols using SimaPro software under recipe 2016 (H) impact assessment method. Six midpoint impact categories viz. Global Warming Potential, Terrestrial Acidification, Freshwater Eutrophication, Terrestrial Ecotoxicity, Human Carcinogenic Toxicity, and Water Consumption are assessed, along with Cumulative Energy Demand. Results suggest that reusable PPE improves environmental and human health performance in all the impact categories except water consumption. Sensitivity analysis reveals that replacing conventional electricity with solar energy for PPE manufacturing and disposal will provide additional environmental benefits. The findings can help the medical textile industries, healthcare workers, and policymakers to make environmentally informed choices.
Collapse
Affiliation(s)
- Snigdha
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Moonmoon Hiloidhari
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Somnath Bandyopadhyay
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|
8
|
Double-interpenetrating nanostructured networks of marine polysaccharides possessing properties comparable to synthetic polymers. Proc Natl Acad Sci U S A 2022; 119:e2204073119. [PMID: 36215498 PMCID: PMC9586260 DOI: 10.1073/pnas.2204073119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sustainable circular economy requires materials that possess a property profile comparable to synthetic polymers and, additionally, processing and sourcing of raw materials that have a small environmental footprint. Here, we present a paradigm for processing marine biopolymers into materials that possess both elastic and plastic behavior within a single system involving a double-interpenetrating polymer network comprising the elastic phase of dynamic physical cross-links and stress-dissipating ionically cross-linked domains. As a proof of principle, films possessing more than twofold higher elastic modulus, ultimate tensile strength, and yield stress than those of polylactic acid were realized by blending two water-soluble marine polysaccharides, namely alginic acid (Alg) with physically cross-linkable carboxylated agarose (CA) followed by ionic cross-linking with a divalent cation. Dried CAAlg films showed homogeneous nano-micro-scale domains, with yield stress and size of the domains scaling inversely with calcium concentration. Through surface activation/cross-linking using calcium, CAAlg films could be further processed using wet bonding to yield laminated structures with interfacial failure loads (13.2 ± 0.81 N) similar to the ultimate loads of unlaminated films (10.09 ± 1.47 N). Toward the engineering of wood-marine biopolymer composites, an array of lines of CAAlg were printed on wood veneers (panels), dried, and then bonded following activation with calcium to yield fully bonded wood two-ply laminate. The system presented herein provides a blueprint for the adoption of marine algae-derived polysaccharides in the development of sustainable high-performance materials.
Collapse
|
9
|
Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios. ENERGIES 2022. [DOI: 10.3390/en15155423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper assesses the primary energy and environmental impacts of a restaurant main course product’s lifecycle, especially focusing on end-of-life (EoL) stage. In the first step, a cradle-to-grave complex life cycle assessment (LCA) model of the product has been set up from the extraction of the required raw materials through the preparation, cooking and use phase to the end-of-life. In the second step, three scenarios (landfilling, incineration, and composting) were compared for the generated food waste in the end-of-life stage given that one of the biggest challenges in waste management is the optimal management of food waste. We calculated eleven environmental impact categories for the examined food product with the help of GaBi 9.0 software. During our research work, the primary energy was examined in each phase. In the third step, a comparison between the traditional and “sous vide” cooking technologies has been created to optimise of the cooking/frying life cycle phase. This paper basically answers three main questions: (1) How can the main environmental impacts and primary energy throughout the whole life cycle of the examined product be characterised? (2) What methods can optimise the different life cycle stages while reducing and recycling energy and material streams? and (3) what is the most optimal waste management scenario at the end-of-life stage? Based on the analysis, the highest environmental impact comes from the preparation phase and the end-of-life scenario for the traditional incineration caused almost twice the environmental load as the landfilling of the food waste. Composting has the lowest environmental impact, and the value of the primary energy for composting is very low. The sous vide cooking technique is advantageous, and the continuously controlled conditions result in a more reliable process. These research results can be used to design sustainable cooking and catering with lower environmental impacts and energy resources in catering units.
Collapse
|
10
|
Energy-Model and Life Cycle-Model for Grinding Processes of Limestone Products. ENERGIES 2022. [DOI: 10.3390/en15103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fine and ultrafine grinding of limestone are frequently used in the pharmaceutical, chemical, construction, food, and cosmetic industries, however, research investigations have not yet been published on the combination of energy and life cycle modeling. Therefore, the first aim of this research work was the examination of main grinding parameters of the limestone particles to determine an empiric energy-model. Dry and wet grinding experiments have been carried out with a Bond mill and a laboratory stirred ball mill. During the grinding processes, the grinding time and the filling ratio have been adjusted. The second goal of this research assessed the resources, emissions and environmental impacts of wet laboratory grinding with the help of life cycle assessment (LCA). The life cycle assessment was completed by applying the GaBi 8.0 (version: 10.5) software and the CML method. As a result of research, the determination of an empiric energy-model allowed to develop an estimated particle size distribution and a relationship between grinding fineness and specific grinding energy. The particle size distribution of ground materials can be exactly calculated by an empirical Rosin–Rammler function which represented well the function parameters on the mill characters. In accordance with LCA results, the environmental impacts for the mass of a useful product for different levels of specific energy with the building of approximation functions were determined. This research work sets up a new complex model with the help of mathematical equations between life cycle assessment and specific energy results, and so improves the energy and environmental efficiency of grinding systems. This research work facilitates the industry to make predictions for a production-scale plant using an LCA of pilot grinding processes.
Collapse
|
11
|
Chomiak M, Rojek M, Stabik J, Szymiczek M. Prediction of Strength Properties of Filling Packets in Selected Cooling Towers. Polymers (Basel) 2021; 13:polym13213840. [PMID: 34771395 PMCID: PMC8587418 DOI: 10.3390/polym13213840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The operating conditions of thermoplastic polymer materials determine the changes in their functional properties. Accelerated aging tests do not give a full picture of the changes taking place in the polymer material, hence the conclusions drawn on the basis of exposure of these materials to damaging effects in real operating conditions are particularly important. The aim of the study was to determine the degree of degradation of polypropylene films used in the drainage blocks of cooling towers in a selected power plant in the Silesian voivodship, which allowed forecasting the operating time over a period of 10 years. A number of 600 mm high drip blocks were tested, on which 300 mm high blocks were mounted. The tests were carried out on films subjected to the aging process in the conditions of continuous operation of a cooling tower (almost 100% humidity). The water flow is accompanied by heat exchange, the side effect of which is deposits formation on the surface of the drip blocks, negatively affecting the operation of the cooling tower. The degree of degradation resulting from operational aging was assessed on the basis of the strength properties determined in the static tensile test, thermogravimetric analysis and FTIR spectra. Changes in properties during operation were determined on the basis of the obtained results of the strength tests, which were compared with the tensile strength and elongation at break of reference samples (not subjected to aging in the operating conditions of cooling tower drip blocks). The obtained results were related to the properties of the reference samples not subjected to the degradation process. Based on the collected data, the tensile strength and deformation at fracture after a 10-year service life were predicted.
Collapse
|
12
|
Alsabri A, Tahir F, Al-Ghamdi SG. Life-Cycle Assessment of Polypropylene Production in the Gulf Cooperation Council (GCC) Region. Polymers (Basel) 2021; 13:polym13213793. [PMID: 34771349 PMCID: PMC8587715 DOI: 10.3390/polym13213793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The environmental impacts of the polypropylene (PP) manufacturing process are not fully understood in the Gulf Cooperation Council (GCC) region. There is a growing interest in assessing the environmental impacts of this highly demanded product, especially for the petrochemical industry sector. This research examines the environmental impacts of the polypropylene manufacturing process using a life cycle assessment (LCA) approach. Gabi software is selected to carry out this research study and quantify the risks associated with manufacturing one ton of polypropylene, chosen as the functional unit for this LCA study. This work has the following merits: (i) an evaluation of environmental impacts specific to GCC region based on actual plant data; (ii) the results in this work can be used to evaluate LCA impacts of PP based products; and (iii) emphasizing the importance of waste management in reducing environmental impacts. This study shows that the polypropylene manufacturing process releases numerous pollutants into the environment, as the gross CO2 emissions for the manufacturing process of PP in the plant located in the GCC region were estimated to be 1.58 kg CO2 eq./kg-PP. The manufacturing process of propylene has extremely high impacts on global warming potential, fossil resource depletion (1.722 kg Oil eq./kg-PP), human toxicity (0.077 kg 1,4-DB eq./kg-PP), acidification (0.0049 kg SO2 eq./kg-PP), and petrochemical oxidant formation (0.0042 kg NMVOC/kg-PP). Additionally, based on the results of this present research, this study proposes possible improvements and alternative solutions such as applying advanced technologies, clean energy, and safe recycling processes in the GCC that are environmentally friendly.
Collapse
|
13
|
Kachrimanidou V, Ioannidou SM, Ladakis D, Papapostolou H, Kopsahelis N, Koutinas AA, Kookos IK. Techno-economic evaluation and life-cycle assessment of poly(3-hydroxybutyrate) production within a biorefinery concept using sunflower-based biodiesel industry by-products. BIORESOURCE TECHNOLOGY 2021; 326:124711. [PMID: 33550212 DOI: 10.1016/j.biortech.2021.124711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
This study presents techno-economic evaluation of a biorefinery concept using biodiesel industry by-products (sunflower meal and crude glycerol) to produce poly(3-hydroxybutyrate) (PHB), crude phenolic extracts (CPE) and protein isolate (PI). The PHB production cost at two annual production capacities ($12.5/kg for 2,500 t PHB/year and $7.8/kg for 25,000 t PHB/year) was not cost-competitive to current PHB production processes when the revenues derived from co-products were not considered. Sensitivity analysis projected the economic viability of a biorefinery concept that could achieve a minimum selling price of $1.1/kg PHB similar to polypropylene. The annual PHB production capacity and the identification of marketable end-uses with respective market prices for the co-products CPE and PI were crucial in attaining process profitability. Greenhouse gas emissions (ca. 0.64 kg CO2-eq/kg PHB) and abiotic depletion potential (61.7 MJ/kg PHB) were lower than polypropylene. Biorefining of sunflower meal and crude glycerol could lead to sustainable PHB production.
Collapse
Affiliation(s)
- Vasiliki Kachrimanidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Sofia Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Harris Papapostolou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, Rio 26504, Patras, Greece
| |
Collapse
|