1
|
Garavito J, Peña-Venegas CP, Castellanos DA. Production of Starch-Based Flexible Food Packaging in Developing Countries: Analysis of the Processes, Challenges, and Requirements. Foods 2024; 13:4096. [PMID: 39767042 PMCID: PMC11675729 DOI: 10.3390/foods13244096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Biodegradable packaging offers an affordable and sustainable solution to global pollution, particularly in developing countries with limited recycling infrastructure. Starch is well suited to develop biodegradable packages for foods due to its wide availability and simple, low-tech production process. Although the development of starch-based packaging is well documented, most studies focus on the laboratory stages of formulation and plasticization, leaving gaps in understanding key phases such as raw material conditioning, industrial-scale molding, post-production processes, and storage. This work evaluates the value chain of starch-based packaging in developing countries. It addresses the challenges, equipment, and process conditions at each stage, highlighting the critical role of moisture resistance in the final product's functionality. A particular focus is placed on replacing single-use plastic packaging, which dominates food industries in regions with agricultural economies and rich biodiversity. A comprehensive analysis of starch-based packaging production, with a detailed understanding of each stage and the overall process, should contribute to the development of more sustainable and scalable solutions, particularly for the replacement of single-use packages, helping to protect vulnerable biodiverse regions from the growing impact of plastic waste.
Collapse
Affiliation(s)
- Johanna Garavito
- Food Packaging and Shelf Life Laboratory, Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Carrera 30 Número 45-03, Edificio 500A, Bogotá 111321, Colombia;
- Instituto Amazónico de Investigaciones Científicas—SINCHI, Avenida Vásquez Cobo Calle 15/16, Leticia 910001, Colombia;
| | - Clara P. Peña-Venegas
- Instituto Amazónico de Investigaciones Científicas—SINCHI, Avenida Vásquez Cobo Calle 15/16, Leticia 910001, Colombia;
| | - Diego A. Castellanos
- Food Packaging and Shelf Life Laboratory, Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Carrera 30 Número 45-03, Edificio 500A, Bogotá 111321, Colombia;
| |
Collapse
|
2
|
Tsegay ZT, Hosseini E, Varzakas T, Smaoui S. The latest research progress on polysaccharides-based biosensors for food packaging: A review. Int J Biol Macromol 2024; 282:136959. [PMID: 39488309 DOI: 10.1016/j.ijbiomac.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, P.O. Box 231, Ethiopia
| | - Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
3
|
Cabrera SF, Ronco LI, Passeggi MCG, Gugliotta LM, Minari RJ. The Role of Starch Incorporation into Waterborne Acrylic-Hybrid Nanoparticles for Film-Forming Applications. Biomacromolecules 2024; 25:6591-6601. [PMID: 39312198 DOI: 10.1021/acs.biomac.4c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The use of biopolymers as an alternative to petroleum-based polymers offers a sustainable solution with benefits such as biodegradability and unique functionalities. In this study, starch/zein bioparticles (BPs) obtained by nanoprecipitation were employed to synthesize acrylic polymer/biopolymer waterborne nanoparticles with excellent film formation capability. These hybrid nanoparticle dispersions were obtained through a semibatch emulsion polymerization using the previously synthesized BPs as seed and variable monomeric formulations composed of butyl acrylate and methyl methacrylate. A synergetic effect between acrylic and biopolymer phases was evidenced where the incorporation of BPs had a fundamental role in improving sensitive properties, such as film blocking resistance, while attaining smooth films at room temperature. These excellent film-forming properties of starch/acrylic hybrid latexes without requiring the addition of formulation agents, which depict an important benefit from an environmental viewpoint, demonstrate that they represent a promising alternative for the development of a new generation of eco-friendly binders.
Collapse
Affiliation(s)
- Sofía F Cabrera
- Polymer Reaction Engineering Group, INTEC, Santa Fe 3000, Argentina
| | - Ludmila I Ronco
- Polymer Reaction Engineering Group, INTEC, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Mario C G Passeggi
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
- Physics of Surfaces and Interfaces Laboratory, IFIS - Litoral, Santa Fe 3000, Argentina
| | - Luis M Gugliotta
- Polymer Reaction Engineering Group, INTEC, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Roque J Minari
- Polymer Reaction Engineering Group, INTEC, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
4
|
Bangar SP, Whiteside WS, Chowdhury A, Ilyas RA, Siroha AK. Recent advancements in functionality, properties, and applications of starch modification with stearic acid: A review. Int J Biol Macromol 2024; 280:135782. [PMID: 39304056 DOI: 10.1016/j.ijbiomac.2024.135782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Starch modifications using chemicals are widely used to improve the desirable properties of native starch. Starch modified with steric acid characterized the starch properties due to the formation of starch-steric acid complex. Structural and functional characteristics of modified starch are influenced by duration, starch-acid concentration ratio, and temperature during the reaction. The diffraction patterns of the starch-stearic acid complexes show a mixture of A-type/B-type and V-type patterns. Starch-stearic acid complexes are regarded as "Generally Recognized as Safe (GRAS)" and are thermally stable and exhibit high paste viscosity and non-gelling properties. Due to their reduced gelling ability and increased viscosity, they can be utilized as fat replacers. Starch stearate also has promising applications in drug delivery due to its biocompatibility and non-gelling properties, which can be utilized for controlled release systems. Additionally, its biodegradability and enhanced thermal stability make it an ideal candidate for use in environmentally friendly, biodegradable materials. Complexes also have the potential for food packaging applications due to their increased thermal stability and improved barrier properties due to the replacement of the hydroxyl group of starch with a hydrophobic functional group of stearic acid (SA). This review paper examines the reaction parameters involved in the SA modification of starches and explores the starch-SA complexes' impact on physicochemical factors, as well as key structural attributes and industrial applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA.
| | - William Scott Whiteside
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA.
| | - Amreen Chowdhury
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - R A Ilyas
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Anil Kumar Siroha
- Chaudhary Charan Singh Haryana Agricultural University College of Agriculture, Bawal, Rewari 123401, India
| |
Collapse
|
5
|
Zhang D, Kishimoto N. Quantum Chemical Investigation into the Structural Analysis and Calculated Raman Spectra of Amylose Modeled with Linked Glucose Molecules. Molecules 2024; 29:2842. [PMID: 38930907 PMCID: PMC11206574 DOI: 10.3390/molecules29122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
This study presents a quantum chemical investigation into the structural analysis and calculated Raman spectra of modeled amylose with varying units of linked glucose molecules. We systematically examined the rotation of hydroxymethyl groups and intramolecular hydrogen bonds within these amylose models. Our study found that as the number of linked glucose units increases, the linear structure becomes more complex, resulting in curled, cyclic, or helical structures facilitated by establishing various intramolecular interactions. The hydroxymethyl groups were confirmed to form interactions with oxygen atoms and with hydroxymethyl and hydroxyl groups from adjacent rings in the molecular structures. We identified distinct peaks and selected specific bands applicable in various analytical contexts by comparing their calculated Raman spectra. Representative vibrational modes within selected regions were identified across the different lengths of amylose models, serving as characteristic signatures for linear and more coiled structural conformations. Our findings contribute to a deeper understanding of amylose structures and spectroscopic signatures, with implications for theoretical studies and potential applications. This work provides valuable reference points for the detailed assignment of Raman peaks of amylose structure, facilitating their application in broader research on carbohydrate structures and their associated spectroscopic properties.
Collapse
Affiliation(s)
| | - Naoki Kishimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
| |
Collapse
|
6
|
Huang PH, Chiu CS, Chan YJ, Su WC, Wang CCR, Lu WC, Li PH. Effect of osmotic pressure and simultaneous heat-moisture phosphorylation treatments on the physicochemical properties of mung bean, water caltrop, and corn starches. Int J Biol Macromol 2024; 272:132358. [PMID: 38750862 DOI: 10.1016/j.ijbiomac.2024.132358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/11/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to investigate the physicochemical properties of modified starch prepared through the simultaneous heat-moisture and phosphorylation treatment (HMPT) and osmotic pressure treatment (OPT) for water caltrop starch (WCS), mung bean starch (MBS), and amylose-rich corn starch (CS) for different time periods. Furthermore, variations in starch content [amylose and resistant starch (RS)], swelling powder (SP), water solubility index (WSI), crystallinity, thermal properties, gelatinization enthalpy (ΔH), and glycemic index (GI) were examined. This study demonstrates that neither HMPT nor OPT resulted in a significant increase in the resistant starch (RS) content, whereas all samples succeeded in heat-treating at 105 °C for another 10 min exhibited a significant increase in RS content compared to their native counterparts. Moreover, the gelatinization temperatures of the three starches increased (To, Tp, and Tc), whereas their gelatinization enthalpy (ΔH) and pasting viscosity decreased. In particular, the GI of all three modified starches subjected to HMPT or OPT showed a decreasing trend with modification time, with OPT exhibiting the best effect. Therefore, appropriate modification through HMPT or OPT is a viable approach to develop MBS, WCS, and CS as processed foods with low GI requirements, which exceptionally may be suitable for canned foods, noodles, and bakery products.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai'an City, Jiangsu Province 223003, China
| | - Chien-Shan Chiu
- Department of Dermatology, Taichung Veterans General Hospital, Taichung City 40705, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua County 51591, Taiwan
| | - Wei-Chen Su
- Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan
| | - Chiun-Chung R Wang
- Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City 60077, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan.
| |
Collapse
|
7
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
8
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
9
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
10
|
Srichompoo P, Suriyapha C, Suntara C, Chankaew S, Rakvong T, Cherdthong A. Effect of Replacing Corn Meal with Winged Bean Tuber ( Psophocarpus tetragonolobus) Pellet on Gas Production, Ruminal Fermentation, and Degradability Using In Vitro Gas Technique. Animals (Basel) 2024; 14:356. [PMID: 38337998 PMCID: PMC10854944 DOI: 10.3390/ani14030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The objective of this study is to evaluate the effects of replacing corn meal in ruminant diets with winged bean (Psophocarpus tetragonolobus) tubers (WBT) on ruminal fermentation, gas production parameters, and in vitro degradability. The study employed a completely random design (CRD) in its execution. The experimental design employed was a completely randomized design (CRD), featuring eleven levels of corn meal substitution with winged bean tubers pellet (WBTP) at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. The levels were grouped into four categories of replacement: control (0% in the diet), low levels (10%, 20%, and 30% in the diet), medium levels (40%, 50%, 60%, and 70% in the diet), and high levels (80%, 90%, and 100% in the diet). The experimental results indicated that substituting corn meal with WBTP at moderate and high levels in the diet could improve the performance of the fermentation process by increasing the gas production rate constant from the insoluble fraction (p < 0.01). The IVDMD exhibited a higher degree of in vitro degradation after 12 h (h), with the mean value being higher in the high group compared to the medium until the high group (p < 0.05). At the 4 h mark, the groups that substituted corn meal with WBTP exhibited a decrease in pH value (p < 0.05) in comparison to the control group. The substitution of corn meal with WBTP resulted in the lowest protozoal count after 8 h in the median group (p < 0.05). A significant difference in the effect of WBTP on total volatile fatty acid (TVFA) concentration was observed at 8 h after incubation (p < 0.05). The medium and high levels of WBTP replacement resulted in the lowest TVFA concentration at 8 h (p < 0.05). The mean proportion of acetic acid (C2) linearly declined and was lowest when a high level of WBTP replaced cornmeal (p < 0.05). The concentration of propionic acid (C3) at 8 h after incubation and average values were linearly significantly different when various levels of WBTP were utilized. Replacing corn meal with WBTP at a high level showed the highest concentration of C3. Moreover, substituting medium and high concentrations of WBTP for corn meal resulted in a significant reduction in both the C2:C3 ratio at 8 h and the mean value (p < 0.05). In conclusion, WBTP exhibits a nutritional composition that is advantageous and may be an energetic substitute for corn meal.
Collapse
Affiliation(s)
- Pachara Srichompoo
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (C.S.); (C.S.)
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (C.S.); (C.S.)
| | - Chanon Suntara
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (C.S.); (C.S.)
| | - Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (T.R.)
| | - Teppratan Rakvong
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (T.R.)
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (C.S.); (C.S.)
| |
Collapse
|
11
|
Kim SR, Park JY, Park EY. Effect of ethanol, phytic acid and citric acid treatment on the physicochemical and heavy metal adsorption properties of corn starch. Food Chem 2024; 431:137167. [PMID: 37604005 DOI: 10.1016/j.foodchem.2023.137167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Corn starch dispersions were heated with ethanol (E) and reacted with phytic acid (E-PA), citric acid (E-CA), and a mixture of phytic and citric acid (E-PACA) under dry-heating to prepare heavy metal adsorbents. Microscopy images indicated that ethanol treatment induced the formation of porous structures on the surface; furthermore, treatment with phytic and citric acid induced indentations, pores, and irregular structures in E-PA, E-CA, and E-PACA starches. Phytic and citric acid were retained in the starch molecules through ester bonds with the phosphate and carboxyl groups, respectively. Starch esterification by phytic and citric acid induced a loss of crystallinity, high water absorption capacity, and low solubility. E-PACA starch exhibited more efficient Cu2+ adsorption (38.13 mg/g) than native, E, E-PA, and E-CA starches (0.11, 0.49, 2.05, and 36.23 mg/g, respectively). Thus, modification with ethanol, phytic acid and citric acid can be applied to prepare natural starch-based heavy metal adsorbents.
Collapse
Affiliation(s)
- Se-Rin Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Lin X, Zhang X, Du B, Xu B. Morphological, Structural, Thermal, Pasting, and Digestive Properties of Starches Isolated from Different Varieties of Rice: A Systematic Comparative Study. Foods 2023; 12:4492. [PMID: 38137295 PMCID: PMC10743165 DOI: 10.3390/foods12244492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to compare the properties of isolated starches from ten commonly consumed rice varieties in China and to investigate their possible association. In addition, principal component analysis (PCA) and correlation analysis were performed to demonstrate the weight or relevance of different properties. The starch granules had an irregular polyhedral structure. The crystalline structure had an orthogonal arrangement, which is characteristic of A-type starch with nanocrystals with an orthorhombic crystal structure. In addition, higher levels of rapidly digestible starch (72.43 to 74.32%) and resistant starch (2.27 to 2.3%) were found in glutinous rice starch. The highest content of slowly digestible starch (59.48%) was found in starch isolated from black rice, which may be an ideal rice variety for controlling blood glucose and weight. Starch isolated from red Hani terrace rice showed the highest thermal stability during cooking and the highest resistance to a high shear force treatment. In addition, the PCA suggests that the amylose content of starch largely determines the functional properties of starch and positively correlates with the peak viscosity and setback viscosity of the starch pasting. The results of this study will enrich the scientific knowledge of various rice starches and promote their application in the food industry and other industries.
Collapse
Affiliation(s)
- Xiaojun Lin
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (X.L.); (X.Z.)
| | - Xuanyi Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (X.L.); (X.Z.)
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (X.L.); (X.Z.)
| |
Collapse
|
13
|
Sun J, Fang TS, Chen YX, Tsai YC, Liu YX, Chen CY, Su CY, Fang HW. Improving the Physical Properties of Starch-Based Powders for Potential Anti-Adhesion Applications. Polymers (Basel) 2023; 15:4702. [PMID: 38139954 PMCID: PMC10747860 DOI: 10.3390/polym15244702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Postoperative adhesion is one of the most common complications that occur during and after surgery; thus, materials that can prevent adhesion are often applied. Starch powders with a high water absorption capacity are preferred, and many studies have focused on increasing the water absorption of modified starches, as native starch powders display poor water-holding capacities. The effects of salts on the physical properties of acetylated distarch phosphate potato starch powders were investigated here. Changes in functional groups, the crystal structures of modified starch, particle morphologies, water absorption, viscosity, and in vivo adhesion were investigated. The results showed that salts greatly improved the water absorption and viscosity of acetylated distarch phosphate potato starch powders. Among the three different salt-modified starch powders, NaCl-modified starch powders displayed higher water absorption and viscosity and demonstrated better in vivo anti-adhesion performance. The results of this study propose a potential biomaterial that may function as an anti-adhesive, potentially leading to reduced surgical risks and a better quality of life for patients.
Collapse
Affiliation(s)
- Jaydon Sun
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA;
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan; (T.-S.F.); (Y.-X.C.); (Y.-C.T.); (Y.-X.L.)
| | - Tzu-Shan Fang
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan; (T.-S.F.); (Y.-X.C.); (Y.-C.T.); (Y.-X.L.)
- Taipei WEGO Private Senior High School, Taipei 11254, Taiwan
| | - Yu-Xiang Chen
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan; (T.-S.F.); (Y.-X.C.); (Y.-C.T.); (Y.-X.L.)
| | - Yu-Cheng Tsai
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan; (T.-S.F.); (Y.-X.C.); (Y.-C.T.); (Y.-X.L.)
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yi-Xin Liu
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan; (T.-S.F.); (Y.-X.C.); (Y.-C.T.); (Y.-X.L.)
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chih-Yu Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Chen-Ying Su
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan; (T.-S.F.); (Y.-X.C.); (Y.-C.T.); (Y.-X.L.)
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hsu-Wei Fang
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan; (T.-S.F.); (Y.-X.C.); (Y.-C.T.); (Y.-X.L.)
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
14
|
Chatterjee S, Mahmood S, Hilles AR, Thomas S, Roy S, Provaznik V, Romero EL, Ghosal K. Cationic starch: A functionalized polysaccharide based polymer for advancement of drug delivery and health care system - A review. Int J Biol Macromol 2023; 248:125757. [PMID: 37429342 DOI: 10.1016/j.ijbiomac.2023.125757] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
Collapse
Affiliation(s)
- Shreya Chatterjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100, Selangor, Malaysia
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Eder Lilia Romero
- Department of Science and Technology, Nanomedicines Research and Development Center, Quilmes National University, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
15
|
Unnawong N, Suriyapha C, Khonkhaeng B, Chankaew S, Rakvong T, Polyorach S, Cherdthong A. Comparison of Cassava Chips and Winged Bean Tubers with Various Starch Modifications on Chemical Composition, the Kinetics of Gas, Ruminal Degradation, and Ruminal Fermentation Characteristics Using an In Situ Nylon Bag and an In Vitro Gas Production Technique. Animals (Basel) 2023; 13:ani13101640. [PMID: 37238070 DOI: 10.3390/ani13101640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This research assessed the impact of cassava chips (CSC) and winged bean tubers (WBT) with various starch modification methods on the chemical composition, ruminal degradation, gas production, in vitro degradability, and ruminal fermentation of feed using an in situ and in vitro gas production technique. Experimental treatments were arranged for a 2 × 5 factorial, a completely randomized design with two sources of starch and five levels of modification treatments. Two sources of starch were CSC and WBT, while five modification treatments of starch were: no modification treatment, steam treatment, sodium hydroxide (NaOH) treatment, calcium hydroxide (CaOH2) treatment, and lactic acid (LA) treatment. The starch modification methods with NaOH and CaOH2 increased the ash content (p <0.05), whereas the crude protein (CP) content was lower after treatment with NaOH (p < 0.05). Steam reduced the soluble fraction (a) and effective dry matter degradability of WBT in situ (p <0.05). In addition, the WBT steaming methods result in a lower degradation rate constant in situ (p <0.05). The degradation rate constants for the insoluble fraction (c) in the untreated CSC were higher than those of the other groups. Starch modification with LA reduced in vitro dry matter degradability at 12 and 24 h of incubation (p <0.05). The starch modification method of the raw material showed the lowest pH value at 4 h (p <0.05). The source of starch and starch modification methods did not influence the in vitro ammonia nitrogen concentrations, or in vitro volatile fatty acids. In conclusion, compared to the CSC group and untreated treatment, treating WBT with steam might be a more effective strategy for enhancing feed efficiency by decreasing or retarding ruminal starch degradability and maintaining ruminal pH.
Collapse
Affiliation(s)
- Narirat Unnawong
- Department of Animal Science, Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaichana Suriyapha
- Department of Animal Science, Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Benjamad Khonkhaeng
- Department of Animal Science, Faculty of Agricultural Innovation and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima Campus, Nakhon Ratchasima 30000, Thailand
| | - Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Teppratan Rakvong
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sineenart Polyorach
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Anusorn Cherdthong
- Department of Animal Science, Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Cruz-Monterrosa RG, Rayas-Amor AA, González-Reza RM, Zambrano-Zaragoza ML, Aguilar-Toalá JE, Liceaga AM. Application of Polysaccharide-Based Edible Coatings on Fruits and Vegetables: Improvement of Food Quality and Bioactivities. POLYSACCHARIDES 2023. [DOI: 10.3390/polysaccharides4020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Most foods derived from plant origin are very nutritious but highly perishable products. Nowadays, the food industry is focusing on the development of efficient preservation strategies as viable alternatives to traditional packaging and chemical treatments. Hence, polysaccharide-based edible coatings have been proposed because of their properties of controlled release of food additives and the protection of sensitive compounds in coated foods. Thus, this technology has allowed for improving the quality parameters and extends the shelf life of fruits and vegetables through positive effects on enzyme activities, physicochemical characteristics (e.g., color, pH, firmness, weight, soluble solids), microbial load, and nutritional and sensory properties of coated foods. Additionally, some bioactive compounds have been incorporated into polysaccharide-based edible coatings, showing remarkable antioxidant and antimicrobial properties. Thus, polysaccharide-based edible coatings incorporated with bioactive compounds can be used not only as an efficient preservation strategy but also may play a vital role in human health when consumed with the food. The main objective of this review is to provide a comprehensive overview of materials commonly used in the preparation of polysaccharide-based edible coatings, including the main bioactive compounds that can be incorporated into edible coatings, which have shown specific bioactivities.
Collapse
|
17
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
18
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
19
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
20
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
21
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
22
|
Valencia-Llano CH, Castro JI, Saavedra M, Zapata PA, Navia-Porras DP, Flórez-López E, Caicedo C, Calambas HL, Grande-Tovar CD. Histological Evaluation of Cassava Starch/Chicken Gelatin Membranes. Polymers (Basel) 2022; 14:polym14183849. [PMID: 36145994 PMCID: PMC9506157 DOI: 10.3390/polym14183849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The use of biopolymers for tissue engineering has recently gained attention due to the need for safer and highly compatible materials. Starch is one of the most used biopolymers for membrane preparation. However, incorporating other polymers into starch membranes introduces improvements, such as better thermal and mechanical resistance and increased water affinity, as we reported in our previous work. There are few reports in the literature on the biocompatibility of starch/chicken gelatin composites. We assessed the in vivo biocompatibility of the five composites (T1–T5) cassava starch/gelatin membranes with subdermal implantations in biomodels at 30, 60, and 90 days. The FT-IR spectroscopy analysis demonstrated the main functional groups for starch and chicken gelatin. At the same time, the thermal study exhibited an increase in thermal resistance for T3 and T4, with a remaining mass (~15 wt.%) at 800 °C. The microstructure analysis for the T2–T4 demonstrated evident roughness changes with porosity presence due to starch and gelatin mixture. The decrease in the starch content in the composites also decreased the gelatinization heats for T3 and T4 (195.67, 196.40 J/g, respectively). Finally, the implantation results demonstrated that the formulations exhibited differences in the degradation and resorption capacities according to the starch content, which is easily degraded by amylases. However, the histological results showed that the samples demonstrated almost complete reabsorption without a severe immune response, indicating a high in vivo biocompatibility. These results show that the cassava starch/chicken gelatin composites are promising membrane materials for tissue engineering applications.
Collapse
Affiliation(s)
- Carlos Humberto Valencia-Llano
- Research Group in Biomateriales Dentales, School of Odontología, Faculty of Health, Campus San Fernando, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia
| | - Jorge Iván Castro
- Research Group SIMERQO, Department of Chemistry, Faculty of Natural and Exact Sciences, Campus Melendez, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 76001, Colombia
| | - Marcela Saavedra
- Research Group of Polímeros, Department of Chemistry, Faculty de Chemistry and Biology, Universidad de Santiago de Chile, USACH, Santiago 9170020, Chile
| | - Paula A. Zapata
- Research Group of Polímeros, Department of Chemistry, Faculty de Chemistry and Biology, Universidad de Santiago de Chile, USACH, Santiago 9170020, Chile
| | - Diana Paola Navia-Porras
- Research Group Biotecnología, Faculty of Engineering, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Santiago de Cali 76001, Colombia
| | - Edwin Flórez-López
- Research Group in Química y Biotecnología QUIBIO, Universidad Santiago de Cali, Calle 5 No 62-00, Cali 760035, Colombia
| | - Carolina Caicedo
- Research Group GIGAE3D, Faculty of Engineering, Unidad Central del Valle del Cauca (UCEVA), Carrera 17ª 48-144, Tuluá 763022, Colombia
| | - Heidy Lorena Calambas
- Research Group in Desarrollo de Materiales y Productos, Centro Nacional de Asistencia Técnica a la Industria (ASTIN), SENA, Cali 760003, Colombia
| | - Carlos David Grande-Tovar
- Research Group of Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
- Correspondence: ; Tel.: +57-5-3599-484
| |
Collapse
|
23
|
Finding a Benign Plasticizer to Enhance the Microbial Degradation of Polyhydroxybutyrate (PHB) Evaluated by PHB Degrader Microbulbifer sp. SOL66. Polymers (Basel) 2022; 14:polym14173625. [PMID: 36080698 PMCID: PMC9460847 DOI: 10.3390/polym14173625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
As a biodegradable plastic, polyhydroxybutyrate (PHB) has relatively poor mechanical properties, preventing its wider use. Various plasticizers have been studied to improve the mechanical properties of PHB; however, due to the slow degradation speed in the soil environment and lack of evaluation methods, studies on the degradation of PHB with plasticizers are rarely reported. In this study, by applying Microbulbifer sp. SOL66, which is able to degrade PHB very quickly, a benign plasticizer was evaluated with good properties and good degradability, not inhibiting microbial activities. Eight different plasticizers were applied with PHB and Microbulbifer sp. SOL66, PHB film containing 10% and 20% tributyl citrate showed significant biodegradability of PHB. It was confirmed that tributyl citrate could increase the speed of PHB degradation by Microbulbifer sp. SOL66 by 88% at 1 day, although the degree of degradation was similar after 3 days with and without tributyl citrate. By the analysis of microbial degradation, physical, chemical, and mechanical properties, tributyl citrate was shown not only to improve physical, chemical, and mechanical properties but also the speed of microbial degradation.
Collapse
|
24
|
Chakraborty I, N. P, Banik S, Govindaraju I, Das K, Mal SS, Zhuo G, Rather MA, Mandal M, Neog A, Biswas R, Managuli V, Datta A, Mahato KK, Mazumder N. Synthesis and detailed characterization of sustainable starch‐based bioplastic. J Appl Polym Sci 2022. [DOI: 10.1002/app.52924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Pooja N.
- Department of Biophysics, Manipal School of Life Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Kuheli Das
- Institute of Chemistry Academia Sinica Nankang Taipei Taiwan
| | - Sib Sankar Mal
- Department of Chemistry National Institute of Technology Karnataka India
| | - Guan‐Yu Zhuo
- Institute of New Drug Development China Medical University Taichung Taiwan
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology Tezpur University Tezpur Assam India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology Tezpur University Tezpur Assam India
| | - Ashamoni Neog
- Applied Optics and Photonics Lab, Department of Physics Tezpur University Tezpur Assam India
| | - Rajib Biswas
- Applied Optics and Photonics Lab, Department of Physics Tezpur University Tezpur Assam India
| | - Vishwanath Managuli
- Department of Mechanical and Industrial Engineering Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka India
| | - Amitabha Datta
- Institute of Chemistry Academia Sinica Nankang Taipei Taiwan
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences Manipal Academy of Higher Education Manipal Karnataka India
| |
Collapse
|
25
|
Ghofrani A, Taghavi L, Khalilivavdareh B, Rohani Shirvan A, Nouri A. Additive manufacturing and advanced functionalities of cardiac patches: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Chemical modifications in the structure of seaweed polysaccharides as a viable antimicrobial application: A current overview and future perspectives. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Cabrera SF, Pighin A, Chiana ML, Passeggi MCG, Ruano GD, Gugliotta LM, Ronco LI, Minari RJ. Synergistic combination between starch and proteins in the synthesis of new acrylic/biopolymers hybrid latexes. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Agustina Pighin
- Facultad de Ingeniería Química Universidad Nacional del Litoral Santa Fe Argentina
| | - Martin L. Chiana
- Facultad de Ingeniería Química Universidad Nacional del Litoral Santa Fe Argentina
| | - Mario C. G. Passeggi
- Facultad de Ingeniería Química Universidad Nacional del Litoral Santa Fe Argentina
- Physics of Surfaces and Interfaces Laboratory IFIS ‐ Litoral Santa Fe Santa Fe Argentina
| | - Gustavo D. Ruano
- División Colisiones Atómicas y Física de Superficies, Centro Atómico Bariloche CONICET Bariloche Argentina
| | - Luis M. Gugliotta
- Polymer Reaction Engineering Group INTEC Santa Fe Argentina
- Facultad de Ingeniería Química Universidad Nacional del Litoral Santa Fe Argentina
| | - Ludmila I. Ronco
- Polymer Reaction Engineering Group INTEC Santa Fe Argentina
- Facultad de Ingeniería Química Universidad Nacional del Litoral Santa Fe Argentina
| | - Roque J. Minari
- Polymer Reaction Engineering Group INTEC Santa Fe Argentina
- Facultad de Ingeniería Química Universidad Nacional del Litoral Santa Fe Argentina
| |
Collapse
|
28
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
29
|
Sarder R, Piner E, Rios DC, Chacon L, Artner MA, Barrios N, Argyropoulos D. Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydr Polym 2022; 278:118973. [PMID: 34973787 DOI: 10.1016/j.carbpol.2021.118973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The outstanding versatility of starch offers a source of inspiration for the development of high-performance-value-added biomaterials for the biomedical field, including drug delivery, tissue engineering and diagnostic imaging. This is because starch-based materials can be tailored to specific applications via facile grafting or other chemistries, introducing specific substituents, with starch being effectively the "template" used in all the chemical transformations discussed in this review. A considerable effort has been carried out to obtain specific tailored starch-based grafted polymers, taking advantage of its biocompatibility and biodegradability with appealing sustainability considerations. The aim of this review is to critically explore the latest research that use grafting chemistries on starch for the synthesis of products for biomedical applications. An effort is made in reviewing the literature that proposes synthetic "greener" approaches, the use of enzymes and their immobilized analogues and alternative solvent systems, including water emulsions, ionic liquids and supercritical CO2.
Collapse
Affiliation(s)
- Roman Sarder
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Emily Piner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - David Cruz Rios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Lisandra Chacon
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Mirela Angelita Artner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | | |
Collapse
|
30
|
Behera AK, Srivastava R, Das AB. Mechanical and Degradation Properties of Thermoplastic Starch Reinforced Nanocomposites. STARCH-STARKE 2022. [DOI: 10.1002/star.202100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ajaya Kumar Behera
- Department of Chemistry Utkal University Bhubaneswar Odisha 751004 India
| | | | - Anath B. Das
- Department of Botany Utkal University Bhubaneswar Odisha 751004 India
| |
Collapse
|
31
|
|
32
|
Beghetto V, Sole R, Buranello C, Al-Abkal M, Facchin M. Recent Advancements in Plastic Packaging Recycling: A Mini-Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4782. [PMID: 34500870 PMCID: PMC8432502 DOI: 10.3390/ma14174782] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023]
Abstract
Today, the scientific community is facing crucial challenges in delivering a healthier world for future generations. Among these, the quest for circular and sustainable approaches for plastic recycling is one of the most demanding for several reasons. Indeed, the massive use of plastic materials over the last century has generated large amounts of long-lasting waste, which, for much time, has not been object of adequate recovery and disposal politics. Most of this waste is generated by packaging materials. Nevertheless, in the last decade, a new trend imposed by environmental concerns brought this topic under the magnifying glass, as testified by the increasing number of related publications. Several methods have been proposed for the recycling of polymeric plastic materials based on chemical or mechanical methods. A panorama of the most promising studies related to the recycling of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS) is given within this review.
Collapse
Affiliation(s)
- Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy
| | - Roberto Sole
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
| | - Chiara Buranello
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
| | - Marco Al-Abkal
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
| |
Collapse
|
33
|
Braşoveanu M, Nemţanu MR. Temperature Profile in Starch during Irradiation. Indirect Effects in Starch by Radiation-Induced Heating. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3061. [PMID: 34205181 PMCID: PMC8199976 DOI: 10.3390/ma14113061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Present research deals with exposure of granular starch to the accelerated electron of 5.5 MeV energy in order to examine: (i) the temperature evolution in starch within an irradiation process and (ii) the indirect effects generated in starch by radiation-induced heating. The temperature evolution in potato and corn starches within the irradiation process was investigated by placing two different sensors inside each starch batch and recording the temperature simultaneously. Each starch batch was sampled into distinct location sectors of different absorbed radiation levels. The output effects in each sample were analyzed through physicochemical properties such as moisture content, acidity and color attributes. The outcomes showed that a starch temperature profile had different major stages: (i) heating during irradiation, (ii) post-irradiation heating, up to the maximum temperature is reached, and (iii) cooling to the room temperature. A material constant with signification of a relaxation time was identified by modeling the temperature evolution. Changes of the investigated properties were induced both by irradiation and radiation-induced heating, depending on the starch type and the batch sectors. Changes in the irradiated batch sectors were explained by irradiation and radiation-induced heating whereas changes in the sector of non-irradiated starch were attributed only to the heating.
Collapse
Affiliation(s)
| | - Monica R. Nemţanu
- Electron Accelerators Laboratory, National Institute for Lasers, Plasma and Radiation Physics 409 Atomiştilor St., P.O. Box MG-36, 077125 Bucharest-Măgurele, Romania;
| |
Collapse
|