1
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
2
|
Rosa RP, Rosace G, Trovato V. Recent Advancements in Acrylic Fabric Applications: A Comprehensive Review and Future Trends. Polymers (Basel) 2024; 16:2111. [PMID: 39125138 PMCID: PMC11314402 DOI: 10.3390/polym16152111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Acrylic fibres, as synthetic polymers, have been used extensively in the textile industry to create a wide variety of products, ranging from apparel and home furnishings to car rooftops and carbon fibres. Their widespread application is attributed to a combination of desirable properties, including a soft, wool-like texture, chemical stability, and robust mechanical characteristics. Furthermore, the chemical structure of acrylic fibres can be modified to imbue them with additional features, such as antimicrobial properties, fire resistance, conductivity, water repellency, and ultraviolet protection. This review explores the technological methods employed to functionalise acrylic fibres and discusses future trends in their development.
Collapse
Affiliation(s)
- Raphael Palucci Rosa
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, BG, Italy;
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, and Local INSTM Unit, Viale Marconi 5, 24044 Dalmine, BG, Italy;
| | - Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, BG, Italy;
| |
Collapse
|
3
|
Lavanya M, Namasivayam SKR, John A. Developmental Formulation Principles of Food Preservatives by Nanoencapsulation-Fundamentals, Application, and Challenges. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04943-1. [PMID: 38713338 DOI: 10.1007/s12010-024-04943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
The role of food additives is to preserve food by extending shelf life and limiting harmful microorganism proliferation. They prevent spoilage by enhancing the taste and safety of food by utilizing beneficial microorganisms and their antimicrobial metabolites. Current advances in food preservation and processing utilize green technology principles for green preservative formulation, enhancing nutrition and supplying essential micronutrients safely, while also improving quality, packaging, and food safety. Encapsulation is gaining attention for its potential to protect delicate materials from oxidative degradation and extend their shelf life, thereby ensuring optimal nutrient uptake. Nanoencapsulation of bioactive compounds has significantly improved the food, pharmaceutical, agriculture, and nutraceutical industries by protecting antioxidants, vitamins, minerals, and essential fatty acids by controlling release and ensuring delivery to specific sites in the human body. This emerging area is crucial for future industrial production, improving the sensory properties of foods like color, taste, and texture. Research on encapsulated bioactive compounds like bacteriocins, LAB, natamycin, polylysine, and bacteriophage is crucial for their potential antioxidant and antimicrobial activities in food applications and the food industry. This paper reviews nanomaterials used as food antimicrobial carriers, including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers, to protect natural food antimicrobials from degradation and improve antimicrobial activity. This review discusses nanoencapsulation techniques for biopreservative agents like nisin, poly lysine, and natamycin, focusing on biologically-derived polymeric nanofibers, nanocarriers, nanoliposomes, and polymer-stabilized metallic nanoparticles. Nanomaterials, in general, improve the dispersibility, stability, and availability of bioactive substances, and this study discusses the controlled release of nanoencapsulated biopreservative agents.
Collapse
Affiliation(s)
- M Lavanya
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Applied Research (SIMATS), Chennai, Tamil Nadu, 602105, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Applied Research (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Arun John
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
| |
Collapse
|
4
|
Peniche H, Razonado IA, Alcouffe P, Sudre G, Peniche C, Osorio-Madrazo A, David L. Wet-Spun Chitosan-Sodium Caseinate Fibers for Biomedicine: From Spinning Process to Physical Properties. Int J Mol Sci 2024; 25:1768. [PMID: 38339046 PMCID: PMC10855522 DOI: 10.3390/ijms25031768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
We designed and characterized chitosan-caseinate fibers processed through wet spinning for biomedical applications such as drug delivery from knitted medical devices. Sodium caseinate was either incorporated directly into the chitosan dope or allowed to diffuse into the chitosan hydrogel from a coagulation bath containing sodium caseinate and sodium hydroxide (NaOH). The latter route, where caseinate was incorporated in the neutralization bath, produced fibers with better mechanical properties for textile applications than those formed by the chitosan-caseinate mixed collodion route. The latter processing method consists of enriching a pre-formed chitosan hydrogel with caseinate, preserving the structure of the semicrystalline hydrogel without drastically affecting interactions involved in the chitosan self-assembly. Thus, dried fibers, after coagulation in a NaOH/sodium caseinate aqueous bath, exhibited preserved ultimate mechanical properties. The crystallinity ratio of chitosan was not significantly impacted by the presence of caseinate. However, when caseinate was incorporated into the chitosan dope, chitosan-caseinate fibers exhibited lower ultimate mechanical properties, possibly due to a lower entanglement density in the amorphous phase of the chitosan matrix. A standpoint is to optimize the chitosan-caseinate composition ratio and processing route to find a good compromise between the preservation of fiber mechanical properties and appropriate fiber composition for potential application in drug release.
Collapse
Affiliation(s)
- Hazel Peniche
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
- Biomaterials Center, University of Havana, Havana 10600, Cuba
| | - Ivy Ann Razonado
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Pierre Alcouffe
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Carlos Peniche
- Faculty of Chemistry, University of Havana, Havana 10600, Cuba;
| | - Anayancy Osorio-Madrazo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Jena Center for Soft Matter (JCSM), and Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University of Jena, 07743 Jena, Germany
- Laboratory of Organ Printing, University of Bayreuth, 95447 Bayreuth, Germany
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| |
Collapse
|
5
|
Ávila-Orta CA, Covarrubias-Gordillo CA, Fonseca-Florido HA, Melo-López L, Radillo-Ruíz R, Gutiérrez-Montiel E. PLA/modified-starch blends and their application for the fabrication of non-woven fabrics by melt-blowing. Carbohydr Polym 2023; 316:120975. [PMID: 37321705 DOI: 10.1016/j.carbpol.2023.120975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Blends of polylactic acid (PLA) and thermoplastic starch (TS) with and without chemical modification were obtained by melt extrusion and used to obtain non-woven fabrics by melt-blowing for the first time. Different TS were obtained by reactive extrusion from native cassava, oxidized, maleated, and dual modified (oxidized and maleated) starch. The chemical modification of starch decreases the difference in viscosity and favors blending, resulting in more homogeneous morphologies, unlike the blends with unmodified TS, which displayed a visible phase separation with large TS droplets. The dual modified starch showed a synergistic effect to process TS by melt-blowing. Regarding non-woven fabrics, values in diameter (2.5-82.1 μm), thickness (0.4-0.6 mm), and grammage (49.9-103.8 g/m2) were explained due to differences in viscosity of the components, and to the fact that during melt the hot air preferentially stretches and thins the areas without large droplets of TS. Moreover, plasticized starch acts as a flow modifier. The porosity of the fibers increased with the addition of TS. Further studies and optimization of blends with low contents of TS and type starch modification will be necessary to completely understand these systems with very complex behavior to obtain non-woven fabrics with improved properties and application.
Collapse
Affiliation(s)
- Carlos Alberto Ávila-Orta
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| | | | - Heidi Andrea Fonseca-Florido
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico.
| | - Leticia Melo-López
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico
| | - Rodolfo Radillo-Ruíz
- Consultoría e Ingeniería en Servicios Especializados (CISE), Leona Vicario 1686, Ciudad de México C.P 09500, Mexico
| | - Edith Gutiérrez-Montiel
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| |
Collapse
|
6
|
Ebbinghaus T, Lang G, Scheibel T. Biomimetic polymer fibers-function by design. BIOINSPIRATION & BIOMIMETICS 2023; 18:041003. [PMID: 37307815 DOI: 10.1088/1748-3190/acddc1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Biomimicry applies the fundamental principles of natural materials, processes, and structures to technological applications. This review presents the two strategies of biomimicry-bottom-up and top-down approaches, using biomimetic polymer fibers and suitable spinning techniques as examples. The bottom-up biomimicry approach helps to acquire fundamental knowledge on biological systems, which can then be leveraged for technological advancements. Within this context, we discuss the spinning of silk and collagen fibers due to their unique natural mechanical properties. To achieve successful biomimicry, it is imperative to carefully adjust the spinning solution and processing parameters. On the other hand, top-down biomimicry aims to solve technological problems by seeking solutions from natural role models. This approach will be illustrated using examples such as spider webs, animal hair, and tissue structures. To contextualize biomimicking approaches in practical applications, this review will give an overview of biomimetic filter technologies, textiles, and tissue engineering.
Collapse
Affiliation(s)
- Thomas Ebbinghaus
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Gregor Lang
- Department of Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
7
|
Wang S, Zhang P, Li Y, Li J, Li X, Yang J, Ji M, Li F, Zhang C. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydr Polym 2023; 307:120627. [PMID: 36781278 DOI: 10.1016/j.carbpol.2023.120627] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Starch is regarded as one of the most promising sustainable materials due to its abundant yield and excellent biodegradability. From the perspective of practical engineering applications, this paper systematically describes the development of starch-based bio-composites in the past decade. Packaging properties, processing characteristics, and current challenges for the efficient processing of starch-based bio-composites are reviewed in industrial packaging. Green coatings, binders, adsorbents, flocculants, flame retardants, and emulsifiers are used as examples to illustrate the versatility of starch-based bio-composites in chemical agent applications. In addition, the work compares the application of starch-based bio-composites in conventional spinning with emerging spinning technologies and describes the challenges of electrostatic spinning for preparing nanoscale starch-based fibers. In terms of flexible electronics, the starch-based bio-composites are regard as a solid polymer electrolyte and easily modified porous material. Moreover, we describe the applications of the starch-based gels in tissue engineering, controlled drug release, and medical dressings. Finally, the theoretical input and technical guidance in the advanced sustainable engineering application of the starch-based bio-composites are provided in the work.
Collapse
Affiliation(s)
- Shen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Junru Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Jihua Yang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
8
|
Schick S, Groten R, Seide GH. Performance Spectrum of Home-Compostable Biopolymer Fibers Compared to a Petrochemical Alternative. Polymers (Basel) 2023; 15:polym15061372. [PMID: 36987153 PMCID: PMC10056001 DOI: 10.3390/polym15061372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Manufacturers of technical polymers must increasingly consider the degradability of their products due to the growing public interest in topics such as greenhouse gas emissions and microplastic pollution. Biobased polymers are part of the solution, but they are still more expensive and less well characterized than conventional petrochemical polymers. Therefore, few biobased polymers with technical applications have reached the market. Polylactic acid (PLA) is the most widely-used industrial thermoplastic biopolymer and is mainly found in the areas of packaging and single-use products. It is classed as biodegradable but only breaks down efficiently above the glass transition temperature of ~60 °C, so it persists in the environment. Some commercially available biobased polymers can break down under normal environmental conditions, including polybutylene succinate (PBS), polybutylene adipate terephthalate (PBAT) and thermoplastic starch (TPS), but they are used far less than PLA. This article compares polypropylene, a petrochemical polymer and benchmark for technical applications, with the commercially available biobased polymers PBS, PBAT and TPS, all of which are home-compostable. The comparison considers processing (using the same spinning equipment to generate comparable data) and utilization. Draw ratios ranged from 29 to 83, with take-up speeds from 450 to 1000 m/min. PP achieved benchmark tenacities over 50 cN/tex with these settings, while PBS and PBAT achieved over 10cN/tex. By comparing the performance of biopolymers to petrochemical polymers in the same melt-spinning setting, it is easier to decide which polymer to use in a particular application. This study shows the possibility that home-compostable biopolymers are suitable for products with lower mechanical properties. Only spinning the materials on the same machine with the same settings produces comparable data. This research, therefore, fills the niche and provides comparable data. To our knowledge, this report is the first direct comparison of polypropylene and biobased polymers in the same spinning process with the same parameter settings.
Collapse
Affiliation(s)
- Simon Schick
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Mönchengladbach, Webschulstrasse 31, 41065 Mönchengladbach, Germany
| | - Gunnar H. Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Correspondence:
| |
Collapse
|
9
|
Xu X, Zhang W, You C, Fan C, Ji W, Park JT, Kwak J, Chen H, Zhang YHPJ, Ma Y. Biosynthesis of artificial starch and microbial protein from agricultural residue. Sci Bull (Beijing) 2023; 68:214-223. [PMID: 36641289 DOI: 10.1016/j.scib.2023.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Growing populations and climate change pose great challenges to food security. Humankind is confronting a serious question: how will we feed the world in the near future? This study presents an out-of-the-box solution involving the highly efficient biosynthesis of artificial starch and microbial proteins from available and abundant agricultural residue as new feed and food sources. A one-pot biotransformation using an in vitro coenzyme-free synthetic enzymatic pathway and baker's yeast can simultaneously convert dilute sulfuric acid-pretreated corn stover to artificial starch and microbial protein under aerobic conditions. The β-glucosidase-free commercial cellulase mixture plus an ex vivo two-enzyme complex containing cellobiose phosphorylase and potato α-glucan phosphorylase displayed on the surface of Saccharomyces cerevisiae, showed better cellulose hydrolysis rates than a commercial β-glucosidase-rich cellulase mixture. This is because the channeling of the hydrolytic product from the solid cellulosic feedstock to the yeast mitigated the inhibition of the cellulase cocktail. Animal tests have shown that the digestion of artificial amylose results in slow and relatively small changes in blood sugar levels, suggesting that it could be a new health food component that prevents obesity and diabetes. A combination of the utilization of available agricultural residue and the biosynthesis of starch and microbial protein from non-food biomass could address the looming food crisis in the food-energy-water nexus.
Collapse
Affiliation(s)
- Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chun You
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiyun Kwak
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
10
|
Coelho SC, Rocha F, Estevinho BN. Electrospinning of Microstructures Incorporated with Vitamin B9 for Food Application: Characteristics and Bioactivities. Polymers (Basel) 2022; 14:polym14204337. [PMID: 36297915 PMCID: PMC9608966 DOI: 10.3390/polym14204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The food industry has been expanding, and new vectors to entrap vitamins have been constantly investigated, aiming at versatile systems with good physico-chemical characteristics, low-cost production, high stability and the efficient release of active ingredients. The vitamin B9 (folic acid or folate) is essential for the healthy functioning of a variety of physiological processes in humans and is beneficial in preventing a range of disorders. In this study, two approaches were developed to encapsulate vitamin B9. Zein and the combination of modified starch with two plasticizers were the selected encapsulating agents to produce microstructures via the electrospinning technique. The objective was to improve the stability and the B9 antioxidant capacity in the final formulations. The work strategy was to avoid limitations such as low bioavailability, stability and thermosensitivity. The microstructures were fabricated and the morphology and shape were assessed by scanning electron microscopy. The B9 release profiles of modified starch and zein microstructures were analyzed in simulated gastric fluid at 37 °C, and in deionized water and ethanol at room temperature. The B9 encapsulation efficiency and the stability of the systems were also studied. The ABTS assay was assessed and the antioxidant activity of the produced microstructures was evaluated. The physico-chemical characterization of loaded B9 in the microstructures was achieved. High encapsulation efficiency values were achieved for the 1% B9 loaded in 12% w/w modified starch film; 5% B9 vitamin encapsulated by the 15% w/w modified starch with 4% w/w tween 80; and 4% w/w glycerol film with heterogeneous microstructures, 5% w/w zein compact film and 10% w/w zein film. In conclusion, the combinations of 7 wt.% of modified starch with 4 wt.% tween 80 and 4 wt.% glycerol; 15 wt.% of modified starch with 4 wt.% tween 80 and 4 wt.% glycerol; and 12 wt.% modified starch and 5 wt.% zein can be used as delivery structures in order to enhance the vitamin B9 antioxidant activity in the food and nutraceutical fields.
Collapse
Affiliation(s)
- Sílvia Castro Coelho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta Nogueiro Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-22-508-2262; Fax: +351-22-508-1449
| |
Collapse
|
11
|
Das A, Ringu T, Ghosh S, Pramanik N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull (Berl) 2022; 80:7247-7312. [PMID: 36043186 PMCID: PMC9409625 DOI: 10.1007/s00289-022-04443-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022]
Abstract
Biopolymers are mainly the polymers which are created or obtained from living creatures such as plants and bacteria rather than petroleum, which has traditionally been the source of polymers. Biopolymers are chain-like molecules composed of repeated chemical blocks derived from renewable resources that may decay in the environment. The usage of biomaterials is becoming more popular as a means of reducing the use of non-renewable resources and reducing environmental pollution produced by synthetic materials. Biopolymers' biodegradability and non-toxic nature help to maintain our environment clean and safe. This study discusses how to improve the mechanical and physical characteristics of biopolymers, particularly in the realm of bioengineering. The paper begins with a fundamental introduction and progresses to a detailed examination of synthesis and a unique investigation of several recent focused biopolymers with mechanical, physical, and biological characterization. Biopolymers' unique non-toxicity, biodegradability, biocompatibility, and eco-friendly features are boosting their applications, especially in bioengineering fields, including agriculture, pharmaceuticals, biomedical, ecological, industrial, aqua treatment, and food packaging, among others, at the end of this paper. The purpose of this paper is to provide an overview of the relevance of biopolymers in smart and novel bioengineering applications. Graphical abstract The Graphical abstract represents the biological sources and applications of biopolymers. Plants, bacteria, animals, agriculture wastes, and fossils are all biological sources for biopolymers, which are chemically manufactured from biological monomer units, including sugars, amino acids, natural fats and oils, and nucleotides. Biopolymer modification (chemical or physical) is recognized as a crucial technique for modifying physical and chemical characteristics, resulting in novel materials with improved capabilities and allowing them to be explored to their full potential in many fields of application such as tissue engineering, drug delivery, agriculture, biomedical, food industries, and industrial applications.
Collapse
Affiliation(s)
- Abinash Das
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| | - Togam Ringu
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| | - Sampad Ghosh
- Department of Chemistry, Nalanda College of Engineering, Nalanda, Bihar 803108 India
| | - Nabakumar Pramanik
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| |
Collapse
|
12
|
Effects of amylose and amylopectin molecular structures on starch electrospinning. Carbohydr Polym 2022; 296:119959. [DOI: 10.1016/j.carbpol.2022.119959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022]
|
13
|
Zhou J, Li X, Hou T, Zhang X, Yang B. Biodegradable, biomimetic, and nanonet-engineered membranes enable high-flux and highly-efficient oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128858. [PMID: 35405607 DOI: 10.1016/j.jhazmat.2022.128858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Porous membranes with fascinating super-wettable surface and tunable porous architecture for oil-water separation have been developed rapidly, however, the serious secondary marine pollution caused by the non-degradable defectiveness of membranes themselves is still a thorny problem. Herein, we create an eco-friendly membrane with biomimetic cobweb-like nanostructure via assembling two-dimensional bacterial cellulose nanonets on the starch nanofibrous membrane on a large scale. The obtained novel composite membranes exhibit integrated properties of sub-micron pore size, ultrahigh porosity, superhydrophilicity, and underwater superoleophobicity, stemming from the synergistic effect of the hydrated nanonet-skin-layer and porous starch matrix. By virtue of the narrow-distributed sub-micron pores, ultrahigh porosity, and ultrathin thickness, the resulting membrane shows outstanding performance of excellent separation efficiency (up to 99.996%), high percolation flux (maximum of 15968 L m-2 h-1), well surpassing the conventional microfiltration membranes. More significantly, with the advantage of biodegradability and anti-oil-fouling property, the membrane could serve as the robust platform for long-term wastewater remediation.
Collapse
Affiliation(s)
- Jing Zhou
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Xianglong Li
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Teng Hou
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Xianggui Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China.
| |
Collapse
|
14
|
Beer-Lech K, Skic A, Skic K, Stropek Z, Arczewska M. Effect of Psyllium Husk Addition on the Structural and Physical Properties of Biodegradable Thermoplastic Starch Film. MATERIALS 2022; 15:ma15134459. [PMID: 35806583 PMCID: PMC9267890 DOI: 10.3390/ma15134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
The research subject was the analysis of the microstructure, barrier properties, and mechanical resistance of the psyllium husk (PH)-modified thermoplastic starch films. The tensile tests under various static loading conditions were not performed by researchers for this type of material before and are essential for a more precise assessment of the material’s behavior under the conditions of its subsequent use. The film samples were manufactured by the casting method. PH addition improved starch gelatinization and caused a decrease in failure strain by 86% and an increase in failure stress by 48% compared to pure films. Fourier transform infrared spectroscopy results showed the formation of additional hydrogen bonds between polysaccharides in starch and PH. An increase in the number of hydrophilic groups in the modified films resulted in a faster contact angle decrease (27.4% compared to 12.8% for pure ones within the first 5 s); however, it increased the energy of water binding and surface complexity. The modified films showed the opacity at 600 nm, 43% higher than in the pure starch film, and lower transmittance, suggesting effectively improving barrier properties to UV light, a potent lipid-oxidizing agent in food systems.
Collapse
Affiliation(s)
- Karolina Beer-Lech
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland; (A.S.); (Z.S.)
- Correspondence:
| | - Anna Skic
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland; (A.S.); (Z.S.)
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna St., 20-290 Lublin, Poland;
| | - Zbigniew Stropek
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland; (A.S.); (Z.S.)
| | - Marta Arczewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| |
Collapse
|
15
|
Satoh R, Morinaga T, Sato T. Novel Dry Spinning Process of Natural Macromolecules for Sustainable Fiber Material -1- Proof of the Concept Using Silk Fibroin. MATERIALS 2022; 15:ma15124195. [PMID: 35744251 PMCID: PMC9228536 DOI: 10.3390/ma15124195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
Researchers around the world are developing technologies to minimize carbon dioxide emissions or carbon neutrality in various fields. In this study, the dry spinning of regenerated silk fibroin (RSF) was achieved as a proof of concept for a process using ionic liquids as dissolution aids and plasticizers in developing natural polymeric materials. A dry spinning equipment system combining a stainless-steel syringe and a brushless motor was built to generate fiber compacts from a dope of silk fibroin obtained by degumming silkworm silk cocoons and ionic liquid 1-hexyl-3-methyl-imidazolium chloride ([HMIM][Cl]) according to a general method. The maximum stress and maximum elongation of the RSF fibers were 159.9 MPa and 31.5%, respectively. RSF fibers containing ionic liquids have a homogeneous internal structure according to morphological investigations. Elemental analysis of fiber cross sections revealed the homogeneous distribution of nonvolatile ionic liquid [HMIM][Cl] in RSF fibers. Furthermore, the removal of ionic liquids from RSF fibers through impregnation washing with organic solvents was verified to enhance industrial applications. Tensile testing showed that the fiber strength could be maintained even after removing the ionic liquid. Thermogravimetric analysis results show that the organic solvent 1,1,1,3,3,3-hexafluoro-2-propanol is chemically coordinated to silk fibroin and, as a natural polymer, can withstand heat up to 250 °C.
Collapse
|
16
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
17
|
Obermeier F, Karlinger P, Schemme M, Altstädt V. Thermoplastic Hybrid Composites with Wood Fibers: Bond Strength of Back-Injected Structures. MATERIALS 2022; 15:ma15072473. [PMID: 35407806 PMCID: PMC8999410 DOI: 10.3390/ma15072473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Due to their lightweight potential and good eco-balance, thermoplastic hybrid composites with natural fiber reinforcement have long been used in the automotive industry. A good alternative to natural fibers is wood fibers, which have similar properties but are also a single-material solution using domestic raw materials. However, there has been hardly any research into wood fibers in thermoplastic back-injected hybrid composites. This article compares the bond strength of an injection molded rib from polypropylene (PP) and wood fibers to different non-wovens. The non-wovens consisted of wood fibers (spruce) or alternatively natural fibers (kenaf, hemp), both with a polypropylene matrix. Pull-off and instrumented puncture impact tests show that, given similar parameters, the natural and wood-fiber-hybrid composites exhibit very similar trends in bond strength. Further tests using viscosity measurements, microscopy, and computed tomography confirm the results. Wood-fiber-reinforced thermoplastic hybrid composites can thus compete with the natural fiber composites in terms of their mechanical behavior and therefore present a good alternative in technical semi-structural applications.
Collapse
Affiliation(s)
- Frederik Obermeier
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (P.K.); (M.S.)
- Correspondence: ; Tel.: +49-(0)-8031-805-2266
| | - Peter Karlinger
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (P.K.); (M.S.)
| | - Michael Schemme
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (P.K.); (M.S.)
| | - Volker Altstädt
- Department of Polymer Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany;
| |
Collapse
|
18
|
Bordoloi R, Ahmed AB, Bhattacharya K. Pharmacoscintigraphic evaluation and antidiabetic efficacy of gliclazide-loaded 99mTc-labelled mucoadhesive microspheres. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The current study was carried out to evaluate the possible application of Musa balbisiana starch in formulation of mucoadhesive microsphere for oral delivery of gliclazide (GLZ). The study objective was to improve the oral bioavailability along with prolongation of its duration of action for a better glycaemic control. Ionic gelation technique was employed in formulating the dosage form. Optimization of the batches was carried out by response surface methodology using 32 full factorial designs. The microsphere prepared was characterized for several parameters along with its in vitro release study. The gastrointestinal transit of the optimized batch of prepared microspheres after oral administration was studied in rabbits by using the gamma scintigraphy technique utilizing 99mTc as the labelling agent in the presence of stannous chloride. Also, the optimized batch was studied for its pharmacokinetic parameters. Moreover, the antidiabetic efficacy of the prepared microsphere was evaluated in rats by using the streptozotocin (STZ)-induced diabetic model.
Results
The factorial design experiment resulted in an optimum formulation coded as F8. The compatible nature of the drug and excipient was revealed from FTIR, DSC and IST studies. The scanning electron micrographs also showed the occurrence of spherical microspheres having a smooth surface. The in vitro release study provided an evidence of an initial burst effect that was followed by a prolong release phase. The pharmacokinetic parameters justified the ability of the prepared dosage form in sustaining the drug release with a 2.7-fold enhancement in drug bioavailability. The images obtained during the gamma scintigraphy study suggested the gastro-retentive nature of the dosage form with the gastro-retentive ability for more than 4 h. Also, the pharmacodynamics study carried out in diabetic rat model confirmed about the better efficacy of the dosage form in lowering the elevated blood glucose level.
Conclusion
The overall study data provide valuable information about the potential of this banana starch in formulation of a mucoadhesive dosage form that can be used for enhancement of bioavailability of drug-like gliclazide which in turn can provide a beneficial effect in the management of diabetes.
Collapse
|
19
|
Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers (Basel) 2021; 13:2729. [PMID: 34451268 PMCID: PMC8399127 DOI: 10.3390/polym13162729] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
Research regarding the use of biopolymers has been of great interest to scientists, the medical community, and the industry especially in recent years. Initially used for food applications, the special properties extended their use to the pharmaceutical and medical industries. The practical applications of natural drug encapsulation materials have emerged as a result of the benefits of the use of biopolymers as edible coatings and films in the food industry. This review highlights the use of polysaccharides in the pharmaceutical industries and as encapsulation materials for controlled drug delivery systems including probiotics, focusing on their development, various applications, and benefits. The paper provides evidence in support of research studying the use of biopolymers in the development of new drug delivery systems, explores the challenges and limitations in integrating polymer-derived materials with product delivery optimization, and examines the host biological/metabolic parameters that can be used in the development of new applications.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Liliana Anchidin-Norocel
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
| | - Roxana Filip
- Hipocrat Clinical Laboratory, 720003 Suceava, Romania;
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|