1
|
Pinho AC, Morais PV, Pereira MF, Piedade AP. Changes in the Antibacterial Performance of Polymer-Based Nanocomposites Induced by Additive Manufacturing Processing. Polymers (Basel) 2025; 17:171. [PMID: 39861243 PMCID: PMC11768115 DOI: 10.3390/polym17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The idea supporting the investigation of the current manuscript was to develop customized filters for air conditioners with different pore percentages and geometry with the additional advantage of presenting antibacterial performance. This property was expected due to the reinforcement of Cu nanoparticles in the polymeric matrix of poly(lactic acid) (PLA) and polyurethane (TPU). The filaments were characterized by their chemical composition, thermal and mechanical properties, and antibacterial behavior before and after processing by fused filament fabrication. An X-ray photoelectron spectroscopy showed that the nanocomposite filaments presented Cu particles at their surface in different valence states, including Cu0, Cu+, and Cu2+. After processing, the metallic particles are almost absent from the surface, a result confirmed by micro-computer tomography (μ-CT) characterization. Antibacterial tests were made using solid-state diffusion tests to mimic the dry environment in air conditioner filters. The tests with the nanocomposite filaments showed that bacteria proliferation was hindered. However, no antibacterial performance could be observed after processing due to the absence of the metallic element on the surface. Nevertheless, antimicrobial performance was observed when evaluated in liquid tests. Therefore, the obtained results provide valuable indications for developing new nanocomposites that must maintain their antimicrobial activity after being processed and tested in the dry conditions of solid-state diffusion.
Collapse
Affiliation(s)
- Ana C. Pinho
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, 3030-788 Coimbra, Portugal;
| | - Paula V. Morais
- Department of Life Sciences, CEMMPRE, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - Manuel F. Pereira
- Instituto Superior Técnico, CERENA, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal;
| | - Ana P. Piedade
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, 3030-788 Coimbra, Portugal;
| |
Collapse
|
2
|
Vidakis N, Michailidis N, David C, Papadakis V, Argyros A, Sagris D, Spiridaki M, Mountakis N, Nasikas NK, Petousis M. Polyvinyl alcohol as a reduction agent in material extrusion additive manufacturing for the development of pharmaceutical-grade polypropylene/silver nanocomposites with antibacterial properties. MATERIALS TODAY COMMUNICATIONS 2024; 39:109366. [DOI: 10.1016/j.mtcomm.2024.109366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Petousis M, Michailidis N, Saltas V, Papadakis V, Spiridaki M, Mountakis N, Argyros A, Valsamos J, Nasikas NK, Vidakis N. Mechanical and Electrical Properties of Polyethylene Terephthalate Glycol/Antimony Tin Oxide Nanocomposites in Material Extrusion 3D Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:761. [PMID: 38727355 PMCID: PMC11085549 DOI: 10.3390/nano14090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
In this study, poly (ethylene terephthalate) (PETG) was combined with Antimony-doped Tin Oxide (ATO) to create five different composites (2.0-10.0 wt.% ATO). The PETG/ATO filaments were extruded and supplied to a material extrusion (MEX) 3D printer to fabricate the specimens following international standards. Various tests were conducted on thermal, rheological, mechanical, and morphological properties. The mechanical performance of the prepared nanocomposites was evaluated using flexural, tensile, microhardness, and Charpy impact tests. The dielectric and electrical properties of the prepared composites were evaluated over a broad frequency range. The dimensional accuracy and porosity of the 3D printed structure were assessed using micro-computed tomography. Other investigations include scanning electron microscopy and energy-dispersive X-ray spectroscopy, which were performed to investigate the structures and morphologies of the samples. The PETG/6.0 wt.% ATO composite presented the highest mechanical performance (21% increase over the pure polymer in tensile strength). The results show the potential of such nanocomposites when enhanced mechanical performance is required in MEX 3D printing applications, in which PETG is the most commonly used polymer.
Collapse
Affiliation(s)
- Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Centre for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Vassilis Saltas
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
| | - Vassilis Papadakis
- Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (IESL-FORTH)–Hellas, N. Plastira 100m, 70013 Heraklion, Greece;
- Department of Industrial Design and Production Engineering, University of West Attica, 12243 Athens, Greece
| | - Mariza Spiridaki
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Apostolos Argyros
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Centre for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - John Valsamos
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Nektarios K. Nasikas
- Division of Mathematics and Engineering Sciences, Department of Military Sciences, Hellenic Army Academy, Vari, 16673 Attica, Greece;
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| |
Collapse
|
4
|
Michailidis N, Petousis M, Saltas V, Papadakis V, Spiridaki M, Mountakis N, Argyros A, Valsamos J, Nasikas NK, Vidakis N. Investigation of the Effectiveness of Silicon Nitride as a Reinforcement Agent for Polyethylene Terephthalate Glycol in Material Extrusion 3D Printing. Polymers (Basel) 2024; 16:1043. [PMID: 38674964 PMCID: PMC11054951 DOI: 10.3390/polym16081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Polyethylene terephthalate glycol (PETG) and silicon nitride (Si3N4) were combined to create five composite materials with Si3N4 loadings ranging from 2.0 wt.% to 10.0 wt.%. The goal was to improve the mechanical properties of PETG in material extrusion (MEX) additive manufacturing (AM) and assess the effectiveness of Si3N4 as a reinforcing agent for this particular polymer. The process began with the production of filaments, which were subsequently fed into a 3D printer to create various specimens. The specimens were manufactured according to international standards to ensure their suitability for various tests. The thermal, rheological, mechanical, electrical, and morphological properties of the prepared samples were evaluated. The mechanical performance investigations performed included tensile, flexural, Charpy impact, and microhardness tests. Scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping were performed to investigate the structures and morphologies of the samples, respectively. Among all the composites tested, the PETG/6.0 wt.% Si3N4 showed the greatest improvement in mechanical properties (with a 24.5% increase in tensile strength compared to unfilled PETG polymer), indicating its potential for use in MEX 3D printing when enhanced mechanical performance is required from the PETG polymer.
Collapse
Affiliation(s)
- Nikolaos Michailidis
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Centre for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th Km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Vassilis Saltas
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
| | - Vassilis Papadakis
- Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (IESL-FORTH)—Hellas, N. Plastira 100m, 70013 Heraklion, Greece;
- Department of Industrial Design and Production Engineering, University of West Attica, 12243 Athens, Greece
| | - Mariza Spiridaki
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Apostolos Argyros
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Centre for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th Km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - John Valsamos
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Nektarios K. Nasikas
- Division of Mathematics and Engineering Sciences, Department of Military Sciences, Hellenic Army Academy, 16673 Vari, Greece;
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| |
Collapse
|
5
|
D'Ovidio AJ, Knarr B, Blanchard AJ, Bennett GW, Leiva W, Duan B, Zuniga JM. Characterization of Antimicrobial Poly(Lactic Acid)- and Polyurethane-Based Materials Enduring Closed-Loop Recycling with Applications in Space. Polymers (Basel) 2024; 16:626. [PMID: 38475308 DOI: 10.3390/polym16050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Recent studies have shown that astronauts experience altered immune response behavior during spaceflight, resulting in heightened susceptibility to illness. Resources and resupply shuttles will become scarcer with longer duration spaceflight, limiting access to potentially necessary medical treatment and facilities. Thus, there is a need for preventative health countermeasures that can exploit in situ resource utilization technologies during spaceflight, such as additive manufacturing (i.e., 3D printing). The purpose of the current study was to test and validate recyclable antimicrobial materials compatible with additive manufacturing. Antimicrobial poly(lactic acid)- and polyurethane-based materials compatible with 3D printing were assessed for antimicrobial, mechanical, and chemical characteristics before and after one closed-loop recycling cycle. Our results show high biocidal efficacy (>90%) of both poly(lactic acid) and polyurethane materials while retaining efficacy post recycling, except for recycled-state polyurethane which dropped from 98.91% to 0% efficacy post 1-year accelerated aging. Significant differences in tensile and compression characteristics were observed post recycling, although no significant changes to functional chemical groups were found. Proof-of-concept medical devices developed show the potential for the on-demand manufacturing and recyclability of typically single-use medical devices using antimicrobial materials that could serve as preventative health countermeasures for immunocompromised populations, such as astronauts during spaceflight.
Collapse
Affiliation(s)
- Andrew J D'Ovidio
- Department of Biomechanics, University of Nebraska at Omaha (UNO), Omaha, NE 68182, USA
| | - Brian Knarr
- Department of Biomechanics, University of Nebraska at Omaha (UNO), Omaha, NE 68182, USA
| | | | - Gregory W Bennett
- Department of Adult Restorative Dentistry, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - William Leiva
- Bucharest University of Economic Studies, 010374 Bucharest, Romania
| | - Bin Duan
- Department of Adult Restorative Dentistry, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Jorge M Zuniga
- Department of Biomechanics, University of Nebraska at Omaha (UNO), Omaha, NE 68182, USA
| |
Collapse
|
6
|
Agarwalla A, Ahmed W, Al-Marzouqi AH, Rizvi TA, Khan M, Zaneldin E. Characteristics and Key Features of Antimicrobial Materials and Associated Mechanisms for Diverse Applications. Molecules 2023; 28:8041. [PMID: 38138531 PMCID: PMC10745420 DOI: 10.3390/molecules28248041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since the Fourth Industrial Revolution, three-dimensional (3D) printing has become a game changer in manufacturing, particularly in bioengineering, integrating complex medical devices and tools with high precision, short operation times, and low cost. Antimicrobial materials are a promising alternative for combating the emergence of unforeseen illnesses and device-related infections. Natural antimicrobial materials, surface-treated biomaterials, and biomaterials incorporated with antimicrobial materials are extensively used to develop 3D-printed products. This review discusses the antimicrobial mechanisms of different materials by providing examples of the most commonly used antimicrobial materials in bioengineering and brief descriptions of their properties and biomedical applications. This review will help researchers to choose suitable antimicrobial agents for developing high-efficiency biomaterials for potential applications in medical devices, packaging materials, biomedical applications, and many more.
Collapse
Affiliation(s)
- Aaruci Agarwalla
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H. Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
7
|
Doganay MT, Chelliah CJ, Tozluyurt A, Hujer AM, Obaro SK, Gurkan U, Patel R, Bonomo RA, Draz M. 3D Printed Materials for Combating Antimicrobial Resistance. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 67:371-398. [PMID: 37790286 PMCID: PMC10545363 DOI: 10.1016/j.mattod.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Three-dimensional (3D) printing is a rapidly growing technology with a significant capacity for translational applications in both biology and medicine. 3D-printed living and non-living materials are being widely tested as a potential replacement for conventional solutions for testing and combating antimicrobial resistance (AMR). The precise control of cells and their microenvironment, while simulating the complexity and dynamics of an in vivo environment, provides an excellent opportunity to advance the modeling and treatment of challenging infections and other health conditions. 3D-printing models the complicated niches of microbes and host-pathogen interactions, and most importantly, how microbes develop resistance to antibiotics. In addition, 3D-printed materials can be applied to testing and delivering antibiotics. Here, we provide an overview of 3D printed materials and biosystems and their biomedical applications, focusing on ever increasing AMR. Recent applications of 3D printing to alleviate the impact of AMR, including developed bioprinted systems, targeted bacterial infections, and tested antibiotics are presented.
Collapse
Affiliation(s)
- Mert Tunca Doganay
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cyril John Chelliah
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Abdullah Tozluyurt
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | | | - Umut Gurkan
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology and Division of Public Health, Infectious Diseases, and Occupational medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA
| | - Mohamed Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Ahmed W, Al-Marzouqi AH, Nazir MH, Rizvi TA, Zaneldin E, Khan M, Aziz M. Investigating the Properties and Characterization of a Hybrid 3D Printed Antimicrobial Composite Material Using FFF Process: Innovative and Swift. Int J Mol Sci 2023; 24:ijms24108895. [PMID: 37240240 DOI: 10.3390/ijms24108895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Novel strategies and materials have gained the attention of researchers due to the current pandemic, the global market high competition, and the resistance of pathogens against conventional materials. There is a dire need to develop cost-effective, environmentally friendly, and biodegradable materials to fight against bacteria using novel approaches and composites. Fused filament fabrication (FFF), also known as fused deposition modeling (FDM), is the most effective and novel fabrication method to develop these composites due to its various advantages. Compared to metallic particles alone, composites of different metallic particles have shown excellent antimicrobial properties against common Gram-positive and Gram-negative bacteria. This study investigates the antimicrobial properties of two sets of hybrid composite materials, i.e., Cu-PLA-SS and Cu-PLA-Al, are made using copper-enriched polylactide composite, one-time printed side by-side with stainless steel/PLA composite, and second-time with aluminum/PLA composite respectively. These materials have 90 wt.% of copper, 85 wt.% of SS 17-4, 65 wt.% of Al with a density of 4.7 g/cc, 3.0 g/cc, and 1.54 g/cc, respectively, and were fabricated side by side using the fused filament fabrication (FFF) printing technique. The prepared materials were tested against Gram-positive and Gram-negative bacteria such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), Salmonella Poona (S. Poona), and Enterococci during different time intervals (5 min, 10 min, 20 min, 1 h, 8 h, and 24 h). The results revealed that both samples showed excellent antimicrobial efficiency, and 99% reduction was observed after 10 min. Hence, three-dimensional (3D) printed polymeric composites enriched with metallic particles can be utilized for biomedical, food packaging, and tissue engineering applications. These composite materials can also provide sustainable solutions in public places and hospitals where the chances of touching surfaces are higher.
Collapse
Affiliation(s)
- Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muhammad Hamza Nazir
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muthanna Aziz
- Department of Mechanical Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
9
|
Petousis M, Michailidis N, Papadakis VM, Korlos A, Mountakis N, Argyros A, Dimitriou E, Charou C, Moutsopoulou A, Vidakis N. Optimizing the Rheological and Thermomechanical Response of Acrylonitrile Butadiene Styrene/Silicon Nitride Nanocomposites in Material Extrusion Additive Manufacturing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1588. [PMID: 37242004 PMCID: PMC10221879 DOI: 10.3390/nano13101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
The current research aimed to examine the thermomechanical properties of new nanocomposites in additive manufacturing (AM). Material extrusion (MEX) 3D printing was utilized to evolve acrylonitrile butadiene styrene (ABS) nanocomposites with silicon nitride nano-inclusions. Regarding the mechanical and thermal response, the fabricated 3D-printed samples were subjected to a course of standard tests, in view to evaluate the influence of the Si3N4 nanofiller content in the polymer matrix. The morphology and fractography of the fabricated filaments and samples were examined using scanning electron microscopy and atomic force microscopy. Moreover, Raman and energy dispersive spectroscopy tests were accomplished to evaluate the composition of the matrix polymer and nanomaterials. Silicon nitride nanoparticles were proved to induce a significant mechanical reinforcement in comparison with the polymer matrix without any additives or fillers. The optimal mechanical response was depicted to the grade ABS/Si3N4 4 wt. %. An impressive increase in flexural strength (30.3%) and flexural toughness (47.2%) was found. The results validate that these novel ABS nanocomposites with improved mechanical properties can be promising materials.
Collapse
Affiliation(s)
- Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (N.M.); (C.C.); (A.M.)
| | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.); (E.D.)
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Vassilis M. Papadakis
- Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (IESL-FORTH), N. Plastira 100m, 70013 Heraklion, Greece;
- Department of Industrial Design and Production Engineering, University of West Attica, 12243 Athens, Greece
| | - Apostolos Korlos
- Department of Industrial Engineering and Management, International Hellenic University, 14th km Thessaloniki-N. Moudania, 57001 Thermi, Greece;
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (N.M.); (C.C.); (A.M.)
| | - Apostolos Argyros
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.); (E.D.)
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Evgenia Dimitriou
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.); (E.D.)
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Chrysa Charou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (N.M.); (C.C.); (A.M.)
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (N.M.); (C.C.); (A.M.)
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (N.M.); (C.C.); (A.M.)
| |
Collapse
|
10
|
Nazir MH, Al-Marzouqi AH, Ahmed W, Zaneldin E. The potential of adopting natural fibers reinforcements for fused deposition modeling: Characterization and implications. Heliyon 2023; 9:e15023. [PMID: 37089374 PMCID: PMC10113796 DOI: 10.1016/j.heliyon.2023.e15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Natural fibers or their derivatives have gained significant attention as green fillers or reinforcement materials due to their abundant availability, environment-friendly nature and biodegradability for sustainable development. Despite the availability of modern alternatives such as concrete, glass-fiber/resin composites, steel, and plastics, there is still considerable demand for naturally occurring based materials for different applications due to their low cost, durability, strength, heat, sound, and fire-resistance characteristics. 3D printing has provided a novel approach to the development and advancement of natural fiber-based composite materials, as well as an important platform for the advancement of biomass materials toward intelligentization and industrialization. The features of 3D printing, particularly fast prototyping and small start-up, allow the easy fabrication of materials for a wide range of applications. This review highlights the current progress and potential commercial applications of 3D printed composites reinforced with natural fibers or biomass. This study discussed that 3D printing technology can be effectively utilized for different applications, including producing electroactive papers, fuel cell membranes, adhesives, wastewater treatment, biosensors, and its potential applications in the automobile, building, and construction industries. The research in the literature showed that even if the field of 3D printing has advanced significantly, problems still need to be solved, such as material incompatibility and material cost. Further studies could be conducted to improve and adapt the methods to work with various materials. More effort should be put into developing affordable printer technologies and materials that work with these printers to broaden the applications for 3D printed objects.
Collapse
|
11
|
Fernandes EM, Lobo FCM, Faria SI, Gomes LC, Silva TH, Mergulhão FJM, Reis RL. Development of Cork Biocomposites Enriched with Chitosan Targeting Antibacterial and Antifouling Properties. Molecules 2023; 28:990. [PMID: 36770658 PMCID: PMC9921838 DOI: 10.3390/molecules28030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The demand for bio-based and safer composite materials is increasing due to the growth of the industry, human population, and environmental concerns. In this framework, sustainable and safer cork-polymer composites (CPC), based on green low-density polyethylene (LDPE) were developed using melt-based technologies. Chitosan and polyethylene-graft-maleic anhydride (PE-g-MA) were employed to enhance the CPC's properties. The morphology, wettability, mechanical, thermal, and antibacterial properties of the CPC against Pseudomonas putida (P. putida) and Staphylococcus aureus (S. aureus) were examined. The CPC showed improved stiffness when compared with that of the LDPE matrix, preferably when combined with chitosan and PE-g-MA (5 wt. %), reinforcing the stiffness (58.8%) and the strength (66.7%). Chitosan also increased the composite stiffness and strength, as well as reduced the surface hydrophilicity. The CPCs' antibacterial activity revealed that cork significantly reduces the biofilm on the polymer matrix. The highest biofilm reduction was found with CPC containing cork and 5 wt. % chitosan for both P. putida (54% reduction) and S. aureus (36% reduction), confirming their potential to extend the lifespan of products for packaging and healthcare, among other applications. This work leads to the understanding of the factors that influence biofilm formation in cork composites and provides a strategy to reinforce their behavior using chitosan.
Collapse
Affiliation(s)
- Emanuel M. Fernandes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Flávia C. M. Lobo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Sara I. Faria
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Filipe J. M. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| |
Collapse
|
12
|
Εkonomou SΙ, Soe S, Stratakos AC. An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens. J Mech Behav Biomed Mater 2023; 137:105536. [PMID: 36327651 DOI: 10.1016/j.jmbbm.2022.105536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial 3D printed surfaces made of PLA and TPU polymers loaded with copper (Cu), and silver (Ag) nanoparticles (NPs) were developed via fused deposition modeling (FDM). The potential antimicrobial effect of the 3D printed surfaces against Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus was evaluated. Furthermore, the mechanical characteristics, including surface topology and morphology, tensile test of specimens manufactured in three different orientations (XY, XZ, and ZX), water absorption capacity, and surface wettability were also assessed. The results showed that both Cu and Ag-loaded 3D printed surfaces displayed a higher inhibitory effect against S. aureus and L. monocytogenes biofilms compared to S. Typhimurium and E. coli biofilms. The results of SEM analysis revealed a low void fraction for the TPU and no voids for the PLA samples achieved through optimization and the small height (0.1 mm) of the printed layers. The best performing specimen in terms of its tensile was XY, followed by ZX and XZ orientation, while it indicated that Cu and Ag-loaded material had a slightly stiffer response than plain PLA. Additionally, Cu and Ag-loaded 3D printed surfaces revealed the highest hydrophobicity compared to the plain polymers making them excellent candidates for biomedical and food production settings to prevent initial bacterial colonization. The approach taken in the current study offers new insights for developing antimicrobial 3D printed surfaces and equipment to enable their application towards the inhibition of the most common nosocomial and foodborne pathogens and reduce the risk of cross-contamination and disease outbreaks.
Collapse
Affiliation(s)
- Sotiriοs Ι Εkonomou
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY, UK
| | - Shwe Soe
- College of Arts, Technology and Environment, School of Engineering, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY, UK
| | - Alexandros Ch Stratakos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY, UK.
| |
Collapse
|
13
|
Impact of Micro Silica Filler Particle Size on Mechanical Properties of Polymeric Based Composite Material. Polymers (Basel) 2022; 14:polym14224830. [PMID: 36432957 PMCID: PMC9697505 DOI: 10.3390/polym14224830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
In this study, silica in the form of raw local natural sand was added to high-density-polyethylene (HDPE) in order to develop a composite material in the form of sheets that could have potential applications in thin film industries, such as packaging, or recycling industries, such as in 3D printing. The silica/HDPE composite sheets were developed using a melt extruder followed by using a hot press for compression molding. The impact of two different particle sizes (25 µm and 5 µm) of the silica particles on selected properties such as toughness, elastic modulus, ductility, and composite density were analyzed. A considerable increase in the toughness and elastic modulus was observed from 0 wt% to 20 wt% with a 25 µm filler size. However, a general decreasing trend was observed in the material's toughness and elastic modulus with decreasing particle size. A similar trend was observed for the ductility and the tensile strength of the sheets prepared from both filler particle sizes. In terms of the composite density, as the filler was increased from 20 wt% to 50 wt%, an increase in the composite densities was noticed for both particle sizes. Additionally, the sheets developed with 25 µm particle size had a slightly higher density than the 5 µm particle size, which is expected as the size can account for the higher weight. Results from this work aim to analyze the use of local sand as a filler material that can contribute towards maximizing the potential of such composite materials developed in extrusion industries.
Collapse
|
14
|
Ahmed W, Al-Marzouqi AH, Nazir MH, Rizvi TA, Zaneldin E, Khan M. Comparative Experimental Investigation of Biodegradable Antimicrobial Polymer-Based Composite Produced by 3D Printing Technology Enriched with Metallic Particles. Int J Mol Sci 2022; 23:11235. [PMID: 36232537 PMCID: PMC9570174 DOI: 10.3390/ijms231911235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Due to the prevailing existence of the COVID-19 pandemic, novel and practical strategies to combat pathogens are on the rise worldwide. It is estimated that, globally, around 10% of hospital patients will acquire at least one healthcare-associated infection. One of the novel strategies that has been developed is incorporating metallic particles into polymeric materials that neutralize infectious agents. Considering the broad-spectrum antimicrobial potency of some materials, the incorporation of metallic particles into the intended hybrid composite material could inherently add significant value to the final product. Therefore, this research aimed to investigate an antimicrobial polymeric PLA-based composite material enhanced with different microparticles (copper, aluminum, stainless steel, and bronze) for the antimicrobial properties of the hybrid composite. The prepared composite material samples produced with fused filament fabrication (FFF) 3D printing technology were tested for different time intervals to establish their antimicrobial activities. The results presented here depict that the sample prepared with 90% copper and 10% PLA showed the best antibacterial activity (99.5%) after just 20 min against different types of bacteria as compared to the other samples. The metallic-enriched PLA-based antibacterial sheets were remarkably effective against Staphylococcus aureus and Escherichia coli; therefore, they can be a good candidate for future biomedical, food packaging, tissue engineering, prosthetic material, textile industry, and other science and technology applications. Thus, antimicrobial sheets made from PLA mixed with metallic particles offer sustainable solutions for a wide range of applications where touching surfaces is a big concern.
Collapse
Affiliation(s)
- Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H. Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muhammad Hamza Nazir
- Department of Chemical and Petroleum Engineering, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Tahir A. Rizvi
- Department of Medical Microbiology & Immunology, College of Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Medical Microbiology & Immunology, College of Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
15
|
Siraj S, Al-Marzouqi AH, Iqbal MZ. Development and Mechano-Chemical Characterization of Polymer Composite Sheets Filled with Silica Microparticles with Potential in Printing Industry. Polymers (Basel) 2022; 14:polym14163351. [PMID: 36015609 PMCID: PMC9416559 DOI: 10.3390/polym14163351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Polymer composite sheets using a low-cost filler (local natural sand) and polymer (high-density polyethylene, HDPE) as a replacement of the traditionally used wood-fiber-based sheets for paper-based applications were developed. The sand/polymer composite sheets were prepared by melt extrusion in a melt blender followed by compression molding. The effects of varying particle size, concentration, and the use of a compatibilizer (polyethylene-grafted maleic anhydride) was studied on the mechano-chemical performance properties of the composite sheets such as morphology, thermal and mechanical properties, and wettability characteristics used in the printing industry. In terms of thermal stability, filler (sand) or compatibilizer addition did not alter the crystallization, melting, or degradation temperatures significantly, thereby promoting good thermal stability of the prepared sheets. Compatibilization improved anti-wetting property with water. Additionally, for the compatibilized sheets prepared from 25 µm sand particles, at 35 wt%, the contact angle with printing ink decreased from 44° to 38.30°, suggesting improved ink-wetting performance. A decrease in the elastic modulus was also observed with the addition of the compatibilizer, with comparable results to commercial stone paper. Results from this study will be considered as a first step towards understanding compatibility of local natural sand and polymers for paper-based application.
Collapse
|
16
|
A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers (Basel) 2022; 14:polym14112238. [PMID: 35683916 PMCID: PMC9182805 DOI: 10.3390/polym14112238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
In tissue engineering, three-dimensional (3D) printing is an emerging approach to producing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows for precise control of materials and other components in the tissue constructs in an automated way, potentially permitting great throughput production. An ink made using one or multiple biomaterials can be 3D printed into tissue constructs by the printing process; though promising in tissue engineering, the printed constructs have also been reported to have the ability to lead to the emergence of unforeseen illnesses and failure due to biomaterial-related infections. Numerous approaches and/or strategies have been developed to combat biomaterial-related infections, and among them, natural biomaterials, surface treatment of biomaterials, and incorporating inorganic agents have been widely employed for the construct fabrication by 3D printing. Despite various attempts to synthesize and/or optimize the inks for 3D printing, the incidence of infection in the implanted tissue constructs remains one of the most significant issues. For the first time, here we present an overview of inks with antibacterial properties for 3D printing, focusing on the principles and strategies to accomplish biomaterials with anti-infective properties, and the synthesis of metallic ion-containing ink, chitosan-containing inks, and other antibacterial inks. Related discussions regarding the mechanics of biofilm formation and antibacterial performance are also presented, along with future perspectives of the importance of developing printable inks.
Collapse
|
17
|
Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers (Basel) 2021; 13:3101. [PMID: 34578002 PMCID: PMC8470301 DOI: 10.3390/polym13183101] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023] Open
Abstract
Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.
Collapse
Affiliation(s)
- Abishek Kafle
- Design Lab, Department of Mechanical Engineering, Kathmandu University, Dhulikhel 45200, Nepal; (A.K.); (R.S.)
| | - Eric Luis
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, China;
| | - Raman Silwal
- Design Lab, Department of Mechanical Engineering, Kathmandu University, Dhulikhel 45200, Nepal; (A.K.); (R.S.)
| | - Houwen Matthew Pan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore;
| | - Pratisthit Lal Shrestha
- Design Lab, Department of Mechanical Engineering, Kathmandu University, Dhulikhel 45200, Nepal; (A.K.); (R.S.)
| | - Anil Kumar Bastola
- Centre for Additive Manufacturing (CfAM), School of Engineering, University of Nottingham, Nottingham NG8 1BB, UK
| |
Collapse
|
18
|
Ahmed W, Siraj S, Al-Marzouqi AH. Comprehensive Characterization of Polymeric Composites Reinforced with Silica Microparticles Using Leftover Materials of Fused Filament Fabrication 3D Printing. Polymers (Basel) 2021; 13:polym13152423. [PMID: 34372025 PMCID: PMC8348735 DOI: 10.3390/polym13152423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Silica exhibits properties such that its addition into polymeric materials can result in an enhanced overall quality and improved characteristics and as a result silica has been widely used as a filler material for improving the rheological properties of polymeric materials. The usage of polymers in three-dimensional printing technology has grown exponentially, which has increased the amount of waste produced during this process. Several polymers, such as polypropylene (PP), polyvinyl alcohol (PVA), polylactic acid (PLA), and nylon, are applied in this emerging technology. In this study, the effect of the addition of silica as a filler on the mechanical, thermal, and bulk density properties of the composites prepared from the aforementioned polymeric waste was studied. In addition, the morphology of the composite materials was characterized via scanning electron microscopy. The composite samples were prepared with various silica concentrations using a twin extruder followed by hot compression. Generally, the addition of silica increased the tensile strength of the polymers. For instance, the tensile strength of PVA with 5 wt% filler increased by 76 MPa, whereas those of PP and PLA with 10 wt% filler increased by 7.15 and 121.03 MPa, respectively. The crystallinity of the prepared composite samples ranged from 14% to 35%, which is expected in a composite system. Morphological analysis revealed the random dispersion of silica particles and agglomerate formation at high silica concentrations. The bulk density of the samples decreased with increased amount of filler addition. The addition of silica influenced the changes in the characteristics of the polymeric materials. Furthermore, the properties presented in this study can be used to further study the engineering design, transportation, and production processes, promoting the recycling and reuse of such waste in the same technology with the desired properties.
Collapse
Affiliation(s)
- Waleed Ahmed
- Engineering Requirements Unit, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence:
| | - Sidra Siraj
- Chemical Engineering Department, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.S.); (A.H.A.-M.)
| | - Ali H. Al-Marzouqi
- Chemical Engineering Department, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.S.); (A.H.A.-M.)
| |
Collapse
|