1
|
Grobler CE, Mabate B, Prins A, Le Roes-Hill M, Pletschke BI. Expression, Purification, and Characterisation of Recombinant Alginate Lyase ( Flammeovirga AL2) for the Bioconversion of Alginate into Alginate Oligosaccharides. Molecules 2024; 29:5578. [PMID: 39683737 DOI: 10.3390/molecules29235578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Alginate, a polysaccharide found in brown seaweeds, has regularly gained attention for its potential use as a source of bioactive compounds. However, it is structurally complex with a high molecular weight, limiting its application. Alginate oligosaccharides (AOS) are small, soluble fragments, making them more bioavailable. Alginate hydrolysis by enzymes is the preferred method for AOS production. Commercially available alginate lyases are limited, expensive, and sometimes exhibit unsatisfactory activity, making the search for novel alginate lyases with improved activity indispensable. The aims of this study were to codon-optimise, synthesise, express, purify, and characterise a recombinant alginate lyase, AL2, from Flammeovirga sp. strain MY04 and to compare it to a commercial alginate lyase. Expression was successfully performed using Escherichia coli ArcticExpress (DE3) RP cells, and the protein was purified through affinity chromatography. The recombinant enzyme was characterised by pH optimum studies, and temperature optimum and stability experiments. The optimal reaction conditions for AL2 were pH 9.0 and 37 °C, while for the commercial enzyme, the optimal conditions were pH 8.0 and 37 °C. At optimal reaction conditions, the specific activity of AL2 was 151.6 ± 12.8 µmol h-1 mg-1 protein and 96.9 ± 13.1 µmol h-1 mg-1 protein for the commercial alginate lyase. Moreover, AL2 displayed impressive activity in breaking down alginate into AOS. Hence, AL2 shows potential for use as an industrial enzyme for the hydrolysis of alginate into alginate oligosaccharides. Additional studies should be carried out to further characterise this enzyme, improve its purity, and optimise its activity.
Collapse
Affiliation(s)
- Coleen E Grobler
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
| | - Blessing Mabate
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
| | - Alaric Prins
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
2
|
Wang P, Cai Y, Zhong H, Chen R, Yi Y, Ye Y, Li L. Expression and Characterization of an Efficient Alginate Lyase from Psychromonas sp. SP041 through Metagenomics Analysis of Rotten Kelp. Genes (Basel) 2024; 15:598. [PMID: 38790228 PMCID: PMC11121350 DOI: 10.3390/genes15050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Alginate is derived from brown algae, which can be cultivated in large quantities. It can be broken down by alginate lyase into alginate oligosaccharides (AOSs), which exhibit a higher added value and better bioactivity than alginate. In this study, metagenomic technology was used to screen for genes that code for high-efficiency alginate lyases. The candidate alginate lyase gene alg169 was detected from Psychromonas sp. SP041, the most abundant species among alginate lyase bacteria on selected rotten kelps. The alginate lyase Alg169 was heterologously expressed in Escherichia coli BL21 (DE3), Ni-IDA-purified, and characterized. The optimum temperature and pH of Alg169 were 25 °C and 7.0, respectively. Metal ions including Mn2+, Co2+, Ca2+, Mg2+, Ni2+, and Ba2+ led to significantly increased enzyme activity. Alg169 exhibited a pronounced dependence on Na+, and upon treatment with Mn2+, its activity surged by 687.57%, resulting in the highest observed enzyme activity of 117,081 U/mg. Bioinformatic analysis predicted that Alg169 would be a double-domain lyase with a molecular weight of 65.58 kDa. It is a bifunctional enzyme with substrate specificity to polyguluronic acid (polyG) and polymannuronic acid (polyM). These results suggest that Alg169 is a promising candidate for the efficient manufacturing of AOSs from brown seaweed.
Collapse
Affiliation(s)
- Ping Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| | - Yi Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Hua Zhong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Ruiting Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| |
Collapse
|
3
|
Chen C, Li X, Lu C, Zhou X, Chen L, Qiu C, Jin Z, Long J. Advances in alginate lyases and the potential application of enzymatic prepared alginate oligosaccharides: A mini review. Int J Biol Macromol 2024; 260:129506. [PMID: 38244735 DOI: 10.1016/j.ijbiomac.2024.129506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Alginate is mainly a linear polysaccharide composed of randomly arranged β-D-mannuronic acid and α-L-guluronic acid linked by α, β-(1,4)-glycosidic bonds. Alginate lyases degrade alginate mainly adopting a β-elimination mechanism, breaking the glycosidic bonds between the monomers and forming a double bond between the C4 and C5 sugar rings to produce alginate oligosaccharides consisting of 2-25 monomers, which have various physiological functions. Thus, it can be used for the continuous industrial production of alginate oligosaccharides with a specific degree of polymerization, in accordance with the requirements of green exploitation of marine resources. With the development of structural analysis, the quantity of characterized alginate lyase structures is progressively growing, leading to a concomitant improvement in understanding the catalytic mechanism. Additionally, the use of molecular modification methods including rational design, truncated expression of non-catalytic domains, and recombination of conserved domains can improve the catalytic properties of the original enzyme, enabling researchers to screen out the enzyme with the expected excellent performance with high success rate and less workload. This review presents the latest findings on the catalytic mechanism of alginate lyases and outlines the methods for molecular modifications. Moreover, it explores the connection between the degree of polymerization and the physiological functions of alginate oligosaccharides, providing a reference for enzymatic preparation development and utilization.
Collapse
Affiliation(s)
- Chen Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Kulig D, Bobak Ł, Jarmoluk A, Szmaja A, Król-Kilińska Ż, Zimoch-Korzycka A. Effect of Chemical Degradation of Sodium Alginate on Capsaicin Encapsulation. Molecules 2023; 28:7844. [PMID: 38067573 PMCID: PMC10708439 DOI: 10.3390/molecules28237844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Capsaicin is known as an oily extract of paprika that is characterized by pungent taste and bioactivity. It also may cause irritation to the mouth and stomach which is why is so important to immobilize capsaicin on a carrier to prevent it. The usage of alginate oligomers, which has an antioxidant potential compared to alginate, is of benefit because it may be used in the immobilization of bioactive substances that are fragile to oxidation. The purpose of this study was to use sodium alginate oligomers as a coating material in the encapsulation process of paprika oleoresin. Alginate oligomers were produced by chemical degradation with hydrogen peroxide. The characteristics of the samples were obtained by measuring the viscosity, the contact angle of the surface, and the surface tension of solutions. The obtained solution of alginate oligomers served as the carrier material for the immobilization of capsaicin. Capsules were prepared by ionic gelation using a calcium chloride solution as a crosslinking agent. In this way, capsules without and with the core (capsaicin) were prepared and their ability to scavenge free radicals (DPPH) and iron-reducing properties (FRAP) were determined. The stability of the capsules was examined by thermal decomposition and under conditions of the gastric and small intestine, and capsaicin content was detected using high-performance liquid chromatography. It was found that alginate oligomers could be used in the encapsulation of bioactive compounds and the efficiency was above 80%. Capsule production from alginate oligomers affected their thermal stability. The use of alginate derivatives as a carrier increased the antioxidant properties of the finished product, as well as its ability to reduce iron ions. The use of alginate oligomers as a coating material prevented the active substance from being released too early in the conditions of the small intestine, prolonged the stability of the capsules, and supported their durability in gastric conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Zimoch-Korzycka
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland; (D.K.); (Ł.B.); (A.J.); (A.S.); (Ż.K.-K.)
| |
Collapse
|
5
|
Rivero-Ramos P, Unthank MG, Sanz T, Rodrigo MD, Benlloch-Tinoco M. Synergistic depolymerisation of alginate and chitosan by high hydrostatic pressure (HHP) and pulsed electric fields (PEF) treatment in the presence of H 2O 2. Carbohydr Polym 2023; 316:120999. [PMID: 37321720 DOI: 10.1016/j.carbpol.2023.120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Physically-induced depolymerisation procedures are often preferred for obtaining alginate and chitosan oligosaccharides as they either do not use or make minimal use of additional chemicals; therefore, separation of the final products is facile. In this work, solutions of three types of alginate with different mannuronic and guluronic acid residues ratio (M/G ratio) and molecular weights (Mw) and one type of chitosan were non-thermally processed by applying high hydrostatic pressures (HHP) up to 500 MPa (20 min) or pulsed electric fields (PEF) up to 25 kV cm-1 (4000 μm) in the absence or presence of 3 % hydrogen peroxide (H2O2). The impact on the physicochemical properties of alginate and chitosan was investigated by rheology, GPC, XRD, FTIR, and 1H NMR. In the rheological investigations, the apparent viscosities of all samples decreased with increasing shear rate, indicating a non-Newtonian shear-thinning behaviour. GPC results reported Mw reductions that ranged between 8 and 96 % for all treatments. NMR results revealed that HHP and PEF treatment predominantly reduced the M/G ratio of alginate and the degree of deacetylation (DDA) of chitosan, whilst H2O2 promoted an increase in the M/G ratio in alginate and DDA of chitosan. Overall, the present investigation has demonstrated the feasibility of HHP and PEF for rapidly producing alginate and chitosan oligosaccharides.
Collapse
Affiliation(s)
- Pedro Rivero-Ramos
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Matthew G Unthank
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Teresa Sanz
- Department of Food Safety and Preservation, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Maria Dolores Rodrigo
- Department of Food Safety and Preservation, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Maria Benlloch-Tinoco
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| |
Collapse
|
6
|
Aitouguinane M, El Alaoui-Talibi Z, Rchid H, Fendri I, Abdelkafi S, El-Hadj MDO, Boual Z, Le Cerf D, Rihouey C, Gardarin C, Dubessay P, Michaud P, Pierre G, Delattre C, El Modafar C. Elicitor Activity of Low-Molecular-Weight Alginates Obtained by Oxidative Degradation of Alginates Extracted from Sargassum muticum and Cystoseira myriophylloides. Mar Drugs 2023; 21:301. [PMID: 37233495 PMCID: PMC10222107 DOI: 10.3390/md21050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.
Collapse
Affiliation(s)
- Meriem Aitouguinane
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Zainab El Alaoui-Talibi
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| | - Halima Rchid
- Laboratoire de Biotechnologies et Valorisation des Ressources Végétales, Faculté des Sciences, Université Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Mohamed Didi Ould El-Hadj
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Zakaria Boual
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Didier Le Cerf
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christophe Rihouey
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christine Gardarin
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Pascal Dubessay
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, F-75005 Paris, France
| | - Cherkaoui El Modafar
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| |
Collapse
|
7
|
Karakaya E, Schöbel L, Zhong Y, Hazur J, Heid S, Forster L, Teßmar J, Boccaccini AR, Detsch R. How to Determine a Suitable Alginate for Biofabrication Approaches using an Extensive Alginate Library? Biomacromolecules 2023. [DOI: 10.1021/acs.biomac.2c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Emine Karakaya
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Lisa Schöbel
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Yu Zhong
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Jonas Hazur
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Susanne Heid
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Leonard Forster
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| |
Collapse
|
8
|
Rahmawati IS, Kusumaningrum HD, Yuliana ND, Sitanggang AB. A systematic review and meta‐analysis of
in vitro
antibacterial activity of depolymerised polysaccharides. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Tian W, Song X, Wang F, Jiang W. Study on the preparation and biological activities of low molecular weight squid ink polysaccharide from Sepiella maindroni. Int J Biol Macromol 2023; 237:124040. [PMID: 36933594 DOI: 10.1016/j.ijbiomac.2023.124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Sepiella maindroni ink polysaccharide (SIP) from the ink of cuttlefish Sepiella maindroni and its sulfated derivative (SIP-SII) have been demonstrated to possess diverse biological activities. But little is known about low molecular weight squid ink polysaccharides (LMWSIPs). In this study, LMWSIPs were prepared by acidolysis, and the fragments with molecular weight (Mw) distribution in the ranges of 7 kDa to 9 kDa, 5 kDa to 7 kDa and 3 kDa to 5 kDa were grouped and named as LMWSIP-1, LMWSIP-2 and LMWSIP-3, respectively. The structural features of LMWSIPs were elucidated, and their anti-tumor, antioxidant and immunomodulatory activities were also studied. The results showed that with the exception of LMWSIP-3, the main structures of LMWSIP-1 and LMWSIP-2 did not change compared with SIP. Though there were no significant differences in the antioxidant capacity between LMWSIPs and SIP, the anti-tumor and immunomodulatory activities of SIP were enhanced to a certain extent after degradation. It is particularly noteworthy that the activities of LMWSIP-2 in anti-proliferation, promoting apoptosis and inhibiting migration of tumor cells as well as promoting the proliferation of spleen lymphocytes were significantly higher than those of SIP and the other degradation products, which is promising in the anti-tumor pharmaceutical field.
Collapse
Affiliation(s)
- Weilu Tian
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xinlei Song
- Department of Pharmacy, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, China.
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
10
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|