1
|
Liu Y, Jiang K, Qin Y, Brennan M, Brennan C, Cao J, Wang Z, Soteyome T. Prediction of the postharvest quality of Boletus wild mushrooms stored with mesoporous silica nanoparticles antibacterial film using Long Short-Term Memory model combined with the Northern Goshawk Optimization (NGO-LSTM). Food Chem 2025; 463:141490. [PMID: 39366091 DOI: 10.1016/j.foodchem.2024.141490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
This study aimed to address the challenge of extending the shelf life of Boletus wild mushrooms, which are prone to environmental and microbial contamination. An antibacterial film composed of polylactic acid (PLA) and mesoporous silica nanoparticles loaded with citral (CMP film) was developed for this purpose. Fifteen quality indices were assessed, and the data were integrated using AHP and TOPSIS to evaluate the film's efficacy. The CMP film effectively maintained the quality of mushroom over time. Additionally, a Nonlinear Global Optimization-Long Short-Term Memory (NGO-LSTM) model was employed to predict storage quality, using seven highly correlated quality indicators. The model achieved a high predictive accuracy, with the R2 exceeding 0.999. This study presents a novel packaging solution and a predictive model that together enhance the storage and quality control of Boletus wild mushrooms.
Collapse
Affiliation(s)
- Yudi Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Thanapop Soteyome
- Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Shah YA, Bhatia S, Al-Harrasi A, Khan TS. Chitosan/sodium alginate/ethyl cellulose-based multilayer film incorporated with l-ascorbic acid for improved barrier and antioxidant properties. Int J Biol Macromol 2025; 284:138169. [PMID: 39613085 DOI: 10.1016/j.ijbiomac.2024.138169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
A bioactive multilayer film (ML) loaded with l-Ascorbic acid (AA) was developed using chitosan (CH), sodium alginate (SA), and ethyl cellulose (EC). Various properties of the films, including morphological, hydrophobic, barrier, mechanical, optical, and antioxidant characteristics, were evaluated and compared to those of monolayer films made from each biopolymer. The cross-sectional analysis via scanning electron microscopy revealed the successful preparation of the ML film with layering of the different biopolymers. For the ML film the resulting water contact angle was observed with an average of 73.86° and the film showed water resistant properties as compared to the individual CH and SA films. The ML film showed the lowest water vapor transmission rate (WVTR) at 54.99 g·d-1·m-2 as compared to the individual films. Moreover, the ML film had the highest tensile strength at 0.56 MPa as compared to the mono-layer films including CH, SA, and EC with TS values of 0.33, 0.24 and 0.17 MPa, respectively. Furthermore, the AA-loaded ML film exhibited significantly higher DPPH scavenging activity at 66.20 %. These findings suggest that the ML film, due to its superior barrier, mechanical, and antioxidant properties has the potential for the applications in active food packaging.
Collapse
Affiliation(s)
- Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman.
| | - Talha Shireen Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| |
Collapse
|
3
|
Xiao J, Liu T, Chu Q, Yu C, Yin Y, Xuan L, Wu S. Development of an UV-Resistant Multilayer Film with Enhanced Compatibility between Carboxymethyl Cellulose and Polylactic Acid via Incorporation of Tannin and Ferric Chloride. Molecules 2024; 29:2822. [PMID: 38930885 PMCID: PMC11206243 DOI: 10.3390/molecules29122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Carboxymethyl cellulose (CMC) and polylactic acid (PLA) are recognized for their environmental friendliness. By merging them into a composite film, packaging solutions can be designed with good performance. Nonetheless, the inherent interface disparity between CMC and PLA poses a challenge, and there may be layer separation issues. This study introduces a straightforward approach to mitigate this challenge by incorporating tannin acid and ferric chloride in the fabrication of the CMC-PLA. The interlayer compatibility was improved by the in situ formation of a cohesive interface. The resulting CMC/TA-PLA/Fe multilayer film, devoid of any layer separation, exhibits exceptional mechanical strength, with a tensile strength exceeding 70 MPa, a high contact angle of 105°, and superior thermal stability. Furthermore, the CMC/TA-PLA/Fe film demonstrates remarkable efficacy in blocking ultraviolet light, effectively minimizing the discoloration of various wood surfaces exposed to UV aging.
Collapse
Affiliation(s)
- Jian Xiao
- Jiangsu Co−Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.X.); (T.L.); (Q.C.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Tingting Liu
- Jiangsu Co−Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.X.); (T.L.); (Q.C.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Qiulu Chu
- Jiangsu Co−Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.X.); (T.L.); (Q.C.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.Y.); (Y.Y.); (L.X.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.Y.); (Y.Y.); (L.X.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Lei Xuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.Y.); (Y.Y.); (L.X.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Shufang Wu
- Jiangsu Co−Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.X.); (T.L.); (Q.C.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
4
|
Dodange S, Shekarchizadeh H, Kadivar M. Development and characterization of antioxidant bilayer film based on poly lactic acid-bitter vetch (Vicia ervilia) seed protein incorporated with Pistacia terebinthus extract for active food packaging. Curr Res Food Sci 2023; 7:100613. [PMID: 37860146 PMCID: PMC10582362 DOI: 10.1016/j.crfs.2023.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
This study focuses on designing an active bilayer food package film based on polylactic acid (PLA) and bitter vetch seed protein incorporated with Pistacia terebinthus extract (PTE). The effect of PTE on the physicochemical, barrier, structural, mechanical, and antioxidant properties of the active film was determined. Moisture content, water solubility, and water vapor permeability (WVP) of the active films indicated that the addition of PTE increased its suitability for food packaging. FE-SEM micrographs illustrated that the resulting films had a smooth and dense surface, describing a continuous network of protein molecules within the film structure. FTIR analysis displayed the physical interaction between PTE and the film polymer. XRD revealed an increase in the crystallinity of the active films. The resulting active film had a low migration rate (<7%) of phenolic compounds into fatty food simulant. Notably, the addition of PTE significantly (P ≤ 0.05) decreased the tensile strength and Young's modulus (from 15.13 and 315.98 MPa to 14.07 and 254.07 MPa, respectively). Concurrently, there was an increase in the elongation at break of the active films (from 23.19 to 75.60%), indicating higher flexibility compared to control films. Additionally, the incorporation of PTE improved the thermal properties of active films. The antioxidant capacity of the designed films was measured based on their DPPH radical scavenging activity, revealing that the antioxidant capacity of the control film increased from 44.65% to 59.72% in the active film containing 15% PTE. In conclusion, the prepared bilayer film can effectively be used as an active food package for sensitive foods to oxidation.
Collapse
Affiliation(s)
- Sona Dodange
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahdi Kadivar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
5
|
Chaudhary V, Thakur N, Chaudhary S, Bangar SP. Remediation plan of nano/microplastic toxicity in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:397-442. [PMID: 36863840 DOI: 10.1016/bs.afnr.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Microplastic pollution is causing a stir globally due to its persistent and ubiquitous nature. The scientific collaboration is diligently working on improved, effective, sustainable, and cleaner measures to control the nano/microplastic load in the environment especially wrecking the aquatic habitat. This chapter discusses the challenges encountered in nano/microplastic control and improved technologies like density separation, continuous flow centrifugation, oil extraction protocol, electrostatic separation to extract and quantify the same. Although it is still in the early stages of research, biobased control measures, like meal worms and microbes to degrade microplastics in the environment have been proven effective. Besides the control measures, practical alternatives to microplastics can be developed like core-shell powder, mineral powder, and biobased food packaging systems like edible films and coatings developed using various nanotechnological tools. Lastly, the existing and ideal stage of global regulations is compared, and key research areas are pinpointed. This holistic coverage would enable manufacturers and consumers to reconsider their production and purchase decisions for sustainable development goals.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Neha Thakur
- Department of Livestock Products Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Suman Chaudhary
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
6
|
Rozman AS, Hashim N, Maringgal B, Abdan K, Sabarudin A. Recent advances in active agent-filled wrapping film for preserving and enhancing the quality of fresh produce. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Valdés A, Mondragon G, Garrigós MC, Eceiza A, Jiménez A. Microwave-assisted extraction of cellulose nanocrystals from almond ( Prunus amygdalus) shell waste. Front Nutr 2023; 9:1071754. [PMID: 36761988 PMCID: PMC9902720 DOI: 10.3389/fnut.2022.1071754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Almond (Prunus amygdalus) is one of the most common tree nuts on a worldwide basis. This nut is highly regarded in the food and cosmetic industries. However, for all these applications, almonds are used without their shell protection, which is industrially removed contributing approximately 35-75% of the total fruit weight. This residue is normally incinerated or dumped, causing several environmental problems. In this study, a novel cellulose nanocrystal (CNCs) extraction procedure from almond shell (AS) waste by using microwave-assisted extraction was developed and compared with the conventional approach. A three-factor, three-level Box-Behnken design with five central points was used to evaluate the influence of extraction temperature, irradiation time, and NaOH concentration during the alkalization stage in crystallinity index (CI) values. A similar CI value (55.9 ± 0.7%) was obtained for the MAE process, comprising only three stages, compared with the conventional optimized procedure (55.5 ± 1.0%) with five stages. As a result, a greener and more environmentally friendly CNC extraction protocol was developed with a reduction in time, solvent, and energy consumption. Fourier transform infrared (FTIR) spectra, X-ray diffractogram (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) images, and thermal stability studies of samples confirmed the removal of non-cellulosic components after the chemical treatments. TEM images revealed a spherical shape of CNCs with an average size of 21 ± 6 nm, showing great potential to be used in food packaging, biological, medical, and photoelectric materials. This study successfully applied MAE for the extraction of spherical-shaped CNCs from AS with several advantages compared with the conventional procedure, reducing costs for industry.
Collapse
Affiliation(s)
- Arantzazu Valdés
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, San Vicente del Raspeig, Spain
| | - Gurutz Mondragon
- Materials Technologies Group, Chemical and Environmental Engineering Department, University of the Basque Country - UPV/EHU, Donostia-San Sebastián, Spain
| | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, San Vicente del Raspeig, Spain
| | - Arantxa Eceiza
- Materials Technologies Group, Chemical and Environmental Engineering Department, University of the Basque Country - UPV/EHU, Donostia-San Sebastián, Spain
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
8
|
Cheng H, Chen L, McClements DJ, Xu H, Long J, Zhao J, Xu Z, Meng M, Jin Z. Recent advances in the application of nanotechnology to create antioxidant active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2890-2905. [PMID: 36178259 DOI: 10.1080/10408398.2022.2128035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nanotechnology is being used to create innovative food packaging systems that can inhibit the oxidation of foods, thereby improving their quality, safety, and shelf life. These nano-enabled antioxidant packaging materials may therefore increase the healthiness and sustainability of the food supply chain. Recent progress in the application of nanotechnology to create antioxidant packaging materials is reviewed in this paper. The utilization of nanoparticles, nanofibers, nanocrystals, and nanoemulsions to incorporate antioxidants into these packaging materials is highlighted. The application of nano-enabled antioxidant packaging materials to preserve meat, seafood, fruit, vegetable, and other foods is then discussed. Finally, future directions and challenges in the development of this kind of active packaging material are highlighted to stimulate new areas of future research. Nanotechnology has already been used to create antioxidant packaging materials that inhibit oxidative deterioration reactions in foods, thereby prolonging their shelf life and reducing food waste. However, the safety, cost, efficacy, and scale-up of this technology still needs to be established before it will be commercially viable for many applications.
Collapse
Affiliation(s)
- Hao Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Guangdong Licheng Detection Technology Co, Ltd, Zhongshan, China
| | | | - Hao Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co, Ltd, Zhongshan, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Choque-Quispe D, Diaz-Barrera Y, Solano-Reynoso AM, Choque-Quispe Y, Ramos-Pacheco BS, Ligarda-Samanez CA, Peralta-Guevara DE, Martínez-Huamán EL, Aguirre Landa JP, Correa-Cuba O, Agreda Cerna HW, Masco-Arriola ML, Lechuga-Canal WJ, Loayza-Céspedes JC, Álvarez-López GJ. Effect of the Application of a Coating Native Potato Starch/Nopal Mucilage/Pectin on Physicochemical and Physiological Properties during Storage of Fuerte and Hass Avocado ( Persea americana). Polymers (Basel) 2022; 14:3421. [PMID: 36015678 PMCID: PMC9415955 DOI: 10.3390/polym14163421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 01/17/2023] Open
Abstract
The avocado fruit is an agro-industrial product with high export demand in Peru due to its sensory and nutritional qualities, which can be affected during storage. The study aimed to evaluate the effect of the application of a coating formulated with potato starch (Solanum tuberosum ssp andigena), nopal mucilage (Opuntia ficus indica), and pectin on the physicochemical and physiological properties during the storage of Fuerte and Hass avocados. Samples were taken in their harvest state from the plantation in “Occobamba”, which is cultivated by the Avocado Producers Association in Chincheros, Apurímac, Peru. Physicochemical properties (titratable acidity, pH, total soluble solids) and physiological properties (weight loss, firmness, and color L* a* b*) were determined during 20 days of storage at 20 °C. The elaborated films present high transparency and low aw values. In the coated avocado of the Hass and Fuerte varieties, acidity and total soluble solids decreased significantly (p-value < 0.05) during the storage time. Weight loss and firmness of coated fruits decrease to a lesser extent. Luminosity L*, color index, and color variation showed better attributes for the coated samples. The use of coatings made with potato starch, nopal mucilage, and pectin allows the physicochemical and physiological properties of avocado fruits to be maintained for a longer time during storage.
Collapse
Affiliation(s)
- David Choque-Quispe
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yasmine Diaz-Barrera
- Escuela de Posgrado, Universidad de San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Aydeé M. Solano-Reynoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Tecnológica de los Andes, Andahuaylas 03701, Peru
| | - Yudith Choque-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Edgar L. Martínez-Huamán
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - John Peter Aguirre Landa
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Odilon Correa-Cuba
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Henrry W. Agreda Cerna
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Mery Luz Masco-Arriola
- Department of Chemical Engineering, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru
| | | | - Julio C. Loayza-Céspedes
- Departamento de Ingeniería Agropecuaria, Universidad Nacional de San Antonio Abad del Cusco, Andahuaylas 03701, Peru
| | | |
Collapse
|
10
|
Díaz-Cruz CA, Caicedo C, Jiménez-Regalado EJ, Díaz de León R, López-González R, Aguirre-Loredo RY. Evaluation of the Antimicrobial, Thermal, Mechanical, and Barrier Properties of Corn Starch-Chitosan Biodegradable Films Reinforced with Cellulose Nanocrystals. Polymers (Basel) 2022; 14:polym14112166. [PMID: 35683839 PMCID: PMC9183151 DOI: 10.3390/polym14112166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/21/2023] Open
Abstract
Packaging materials play an essential role in the preservation and marketing of food and other products. To improve their conservation capacity, antimicrobial agents that inhibit bacterial growth are used. Biopolymers such as starch and chitosan are a sustainable alternative for the generation of films for packaging that can also serve as a support for preservatives and antimicrobial agents. These substances can replace packaging of synthetic origin and maintain good functional properties to ensure the quality of food products. Films based on a mixture of corn starch and chitosan were developed by the casting method and the effect of incorporating cellulose nanocrystals (CNC) at different concentrations (0 to 10% w/w) was studied. The effect of the incorporation of CNC on the rheological, mechanical, thermal and barrier properties, as well as the antimicrobial activity of nanocomposite films, was evaluated. A significant modification of the functional and antimicrobial properties of the starch–chitosan films was observed with an increase in the concentration of nanomaterials. The films with CNC in a range of 0.5 to 5% presented the best performance. In line with the physicochemical characteristics which are desired in antimicrobial materials, this study can serve as a guide for the development this type of packaging for food use.
Collapse
Affiliation(s)
- Claudio Alonso Díaz-Cruz
- Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza SN, Saltillo 25280, Coahuila, Mexico;
| | - Carolina Caicedo
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Pampalinda, Santiago de Cali 760035, Colombia;
| | - Enrique Javier Jiménez-Regalado
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico; (E.J.J.-R.); (R.D.d.L.); (R.L.-G.)
| | - Ramón Díaz de León
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico; (E.J.J.-R.); (R.D.d.L.); (R.L.-G.)
| | - Ricardo López-González
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico; (E.J.J.-R.); (R.D.d.L.); (R.L.-G.)
| | - Rocio Yaneli Aguirre-Loredo
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico; (E.J.J.-R.); (R.D.d.L.); (R.L.-G.)
- Investigadora por México CONACYT-Centro de Investigación en Química Aplicada Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico
- Correspondence:
| |
Collapse
|
11
|
Development of active films utilizing antioxidant compounds obtained from tomato and lemon by-products for use in food packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers (Basel) 2022; 14:polym14040829. [PMID: 35215741 PMCID: PMC8878437 DOI: 10.3390/polym14040829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today’s smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems.
Collapse
|
13
|
Characterization of Sodium Alginate-Locust Bean Gum Films Reinforced with Daphnetin Emulsions for the Development of Active Packaging. Polymers (Basel) 2022; 14:polym14040731. [PMID: 35215643 PMCID: PMC8876320 DOI: 10.3390/polym14040731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we characterized an active film made of sodium alginate (SA)—locust bean gum (LBG) containing daphnetin-based film. Physicochemical characteristics, as well as antioxidant and antibacterial properties, were investigated. The results showed that the addition of a low concentration of daphnetin increased the flexibility of SA–LBG cling film, leading to an improvement in elongation at break and tensile strength. As the daphnetin content increased, solubility, brightness and transparency of the cling film decreased, and the moisture permeability increased. The antioxidant capacity and antibacterial activity of films with daphnetin were improved compared to those of the basal film. In addition, the cling film formed by adsorption had higher bacterial (Shewanella putrefaciens and Pseudomonas fluorescens) inhibition and antioxidant activity rates than direct film formation. The results indicate that the combination of daphnetin in SA–LBG film provides an active film with antioxidant and antibacterial properties, with potential for the development of food-grade packaging material.
Collapse
|
14
|
Hernández-García E, Vargas M, Torres-Giner S. Quality and Shelf-Life Stability of Pork Meat Fillets Packaged in Multilayer Polylactide Films. Foods 2022; 11:foods11030426. [PMID: 35159576 PMCID: PMC8833934 DOI: 10.3390/foods11030426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
In the present study, the effectiveness of a multilayer film of polylactide (PLA), fully bio-based and compostable, was ascertained to develop a novel sustainable packaging solution for the preservation of fresh pork meat. To this end, the multilayer PLA films were first characterized in terms of their thermal characteristics, structure, mechanical performance, permeance to water and aroma vapors and oxygen, and optical properties and, for the first time, compared with two commercial high-barrier multilayer packaging films. Thereafter, the multilayers were thermosealed to package fillets of fresh pork meat and the physicochemical changes, lipid oxidation levels, and microbiological counts were monitored in the food samples during storage under refrigeration conditions. Results showed that the meat fillets packaged in PLA developed a redder color and showed certain indications of dehydration and oxidation, being more noticeably after 11 days of storage, due to the higher water vapor and oxygen permeance values of the biopolymer multilayer. However, the pH changes and bacterial growth in the cold-stored fresh pork meat samples were minimal and very similar in the three tested multilayer films, successfully accomplishing the requirements of the food quality and safety standards at the end of storage.
Collapse
|