1
|
Alibekov RS, Urazbayeva KU, Azimov AM, Rozman AS, Hashim N, Maringgal B. Advances in Biodegradable Food Packaging Using Wheat-Based Materials: Fabrications and Innovations, Applications, Potentials, and Challenges. Foods 2024; 13:2964. [PMID: 39335892 PMCID: PMC11431393 DOI: 10.3390/foods13182964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This article explores the advancements in biodegradable food packaging materials derived from wheat. Wheat, a predominant global cereal crop, offers a sustainable alternative to conventional single-use plastics through its starch, gluten, and fiber components. This study highlights the fabrication processes of wheat-based materials, including solvent casting and extrusion, and their applications in enhancing the shelf life and quality of packaged foods. Recent innovations demonstrate effectiveness in maintaining food quality, controlling moisture content, and providing microbiological protection. Despite the promising potential, challenges such as moisture content and interfacial adhesion in composites remain. This review concludes with an emphasis on the environmental benefits and future trends in wheat-based packaging materials.
Collapse
Affiliation(s)
- Ravshanbek S Alibekov
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Klara U Urazbayeva
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Abdugani M Azimov
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Azri Shahir Rozman
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| |
Collapse
|
2
|
Aiduang W, Jatuwong K, Luangharn T, Jinanukul P, Thamjaree W, Teeraphantuvat T, Waroonkun T, Lumyong S. A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets. Biomimetics (Basel) 2024; 9:337. [PMID: 38921217 PMCID: PMC11202202 DOI: 10.3390/biomimetics9060337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Mycelium-based green composites (MBCs) represent an eco-friendly material innovation with vast potential across diverse applications. This paper provides a thorough review of the factors influencing the production and properties of MBCs, with a particular focus on interdisciplinary collaboration and long-term sustainability goals. It delves into critical aspects such as fungal species selection, substrate type selection, substrate preparation, optimal conditions, dehydrating methods, post-processing techniques, mold design, sterilization processes, cost comparison, key recommendations, and other necessary factors. Regarding fungal species selection, the paper highlights the significance of considering factors like mycelium species, decay type, hyphal network systems, growth rate, and bonding properties in ensuring the safety and suitability of MBCs fabrication. Substrate type selection is discussed, emphasizing the importance of chemical characteristics such as cellulose, hemicellulose, lignin content, pH, organic carbon, total nitrogen, and the C: N ratio in determining mycelium growth and MBC properties. Substrate preparation methods, optimal growth conditions, and post-processing techniques are thoroughly examined, along with their impacts on MBCs quality and performance. Moreover, the paper discusses the importance of designing molds and implementing effective sterilization processes to ensure clean environments for mycelium growth. It also evaluates the costs associated with MBCs production compared to traditional materials, highlighting potential cost savings and economic advantages. Additionally, the paper provides key recommendations and precautions for improving MBC properties, including addressing fungal strain degeneration, encouraging research collaboration, establishing biosecurity protocols, ensuring regulatory compliance, optimizing storage conditions, implementing waste management practices, conducting life cycle assessments, and suggesting parameters for desirable MBC properties. Overall, this review offers valuable insights into the complex interplay of factors influencing MBCs production and provides guidance for optimizing processes to achieve sustainable, high-quality composites for diverse applications.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Praween Jinanukul
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.)
| | - Wandee Thamjaree
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Tanut Waroonkun
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
3
|
Wu H, Wang J, Li T, Lei Y, Peng L, Chang J, Li S, Yuan X, Zhou M, Zhang Z. Effects of cinnamon essential oil-loaded Pickering emulsion on the structure, properties and application of chayote tuber starch-based composite films. Int J Biol Macromol 2023; 240:124444. [PMID: 37062380 DOI: 10.1016/j.ijbiomac.2023.124444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
The use of non-conventional starch sources to develop biodegradable and bioactive starch-based films have attracted increasing attention recently. In this study, a nonconventional chayote tuber starch (CTS) was functionalized by zein-pectin nanoparticle-stabilized cinnamon essential oil (CEO) Pickering emulsion (ZPCO) to develop a novel bioactive composite films for food packaging application. Results demonstrated that antibacterial ZPCO featuring long-term stability was successfully obtained. FTIR and SEM analyses suggested that ZPCO have favorable dispersibility and compatibility with CTS matrix. With ZPCO increasing, the transmittance, tensile strength, and moisture content of composite films decreased, whereas their elongation at break, antimicrobial and antioxidant activities increased. ZPCO added at an appropriate level (2 %) can improve water-resistance of the films and reduce water vapor permeability. More importantly, ZPCO can achieve a slower sustained-release of CEO from composite films into food simulants. Furthermore, the composite film containing 2 % ZPCO is safe and nontoxic as proved by cell cytotoxicity test, and it can significantly prolong the shelf life of ground beef by showing the lowest total volatile base nitrogen and best acceptable sensory characteristic. Overall, the incorporation of ZPCO into CTS films offers a great potential application as a bioactive material in the food packing.
Collapse
Affiliation(s)
- Hejun Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China; College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China.
| | - Jie Wang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Ting Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Yuxiao Lei
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Lu Peng
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Jiaqi Chang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| |
Collapse
|
4
|
Mohammed AABA, Hasan Z, Omran AAB, Elfaghi AM, Khattak M, Ilyas RA, Sapuan SM. Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films. Polymers (Basel) 2022; 15:polym15010063. [PMID: 36616412 PMCID: PMC9823313 DOI: 10.3390/polym15010063] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/28/2022] Open
Abstract
Biocomposite materials are essential for environmental protection, as they have the ability of substituting synthetic plastic with natural materials. This work investigated how different plasticizers (Glycerol (G), Fructose (F), Sorbitol (S), and Urea (U)) affect the morphological, mechanical, thermal, and physical characteristics of films made of wheat starch at various concentrations (0%, 15%, 25%, and 35%). Plasticizers were added to improve the flexibility and homogeneity of the wheat starch-based bioplastic. Control film exhibited high tensile strength (38.7 MPa) with low elongation (1.9%). However, films plasticized with 35% sorbitol showed the highest elongation, which was 60.7% at break. At 35% of all plasticizers, fructose showed the highest tensile strength, with 7.6 MPa. The addition of different plasticizers shows improvement in water resistance; films plasticized with glycerol had the lowest water absorption at 35% fructose (187.4%) and also showed coherent surfaces. Glycerol, sorbitol, and urea films showed a higher mass loss compared to fructose films. Fructose showed the highest performance after the analysis of the results, with low water absorption, water content, and mass loss and with high mechanical performance at 35% of fructose. SEM images show that the addition of fructose and glycerol improves the surface homogenate, while sorbitol and urea have a less compact structure with large pores.
Collapse
Affiliation(s)
| | - Zaimah Hasan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia
- Correspondence: (Z.H.); (A.A.B.O.)
| | - Abdoulhdi A. Borhana Omran
- Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Sohar University, Sohar P C-311, Oman
- Department of Mechanical Engineering, College of Engineering Science & Technology, Sebha University, Sabha 00218, Libya
- Correspondence: (Z.H.); (A.A.B.O.)
| | - Abdulhafid M. Elfaghi
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia
| | - M.A. Khattak
- ARL Laboratory Services PTY Ltd., 1361/55 Pine Rd., Yennora, Sydney, NSW 216, Australia
| | - R. A. Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Center (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
6
|
Mohammed AABA, Hasan Z, Omran AAB, Kumar V, Elfaghi AM, Ilyas RA, Sapuan SM. Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications. Polymers (Basel) 2022; 14:polym14204396. [PMID: 36297977 PMCID: PMC9607144 DOI: 10.3390/polym14204396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Biocomposite materials have a significant function in saving the environment by replacing artificial plastic materials with natural substances. They have been enrolled in many applications, such as housing, automotive engine components, aerospace and military products, electronic and circuit board components, and oil and gas equipment. Therefore, continuous studies have been employed to improve their mechanical, thermal, physical properties. In this research, we conduct a comprehensive review about corn fiber and corn starch-based biocomposite. The results gained from previous studies were compared and discussed. Firstly, the chemical, thermal, and mechanical properties of cornstarch-based composite were discussed. Then, the effects of various types of plasticizers on the flexibility of the cornstarch-based composite were addressed. The effects of chemical treatments on the properties of biocomposite using different cross-linking agents were discussed. The corn fiber surface treatment to enhance interfacial adhesion between natural fiber and polymeric matrix also were addressed. Finally, morphological characterization, crystallinity degree, and measurement of vapor permeability, degradation, and uptake of water were discussed. The mechanical, thermal, and water resistance properties of corn starch and fibers-based biopolymers show a significant improvement through plasticizing, chemical treatment, grafting, and cross-linker agent procedures, which expands their potential applications.
Collapse
Affiliation(s)
| | - Zaimah Hasan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Malaysia
- Correspondence: (Z.H.); (A.A.B.O.)
| | - Abdoulhdi A. Borhana Omran
- Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Sohar University, Sohar P C-311, Oman
- Department of Mechanical Engineering, College of Engineering Science & Technology, Sebha University, Sabha 00218, Libya
- Correspondence: (Z.H.); (A.A.B.O.)
| | - V.Vinod Kumar
- Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Sohar University, Sohar P C-311, Oman
| | - Abdulhafid M. Elfaghi
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia
| | - R. A. Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Center (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
7
|
Ilyas RA, Sapuan SM, Bayraktar E. Bio and Synthetic Based Polymer Composite Materials. Polymers (Basel) 2022; 14:polym14183778. [PMID: 36145924 PMCID: PMC9503542 DOI: 10.3390/polym14183778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites, Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Emin Bayraktar
- School of Mechanical and Manufacturing Engineering, ISAE-SUPMECA Institute of Mechanics of Paris, 93400 Saint-Ouen, France
| |
Collapse
|
8
|
Effects of Mung Bean ( Vigna radiata) Protein Isolate on Rheological, Textural, and Structural Properties of Native Corn Starch. Polymers (Basel) 2022; 14:polym14153012. [PMID: 35893974 PMCID: PMC9331134 DOI: 10.3390/polym14153012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
It is critical to understand the starch–protein interactions in food systems to obtain products with desired functional properties. This study aimed to investigate the influence of mung bean protein isolate (MBPI) on the rheological, textural, and structural properties of native corn starch (NCS) and their possible interactions during gelatinization. The dynamic rheological measurements showed a decrease in the storage modulus (G’) and loss modulus (G”) and an increase in the loss factor (tan δ), by adding MBPI to NCS gels. In addition, the textural properties represented a reduction in firmness after the addition of MBPI. The Scanning electron microscope (SEM) images of the freeze-dried NCS/MBPI gels confirmed that the NCS gel became softer by incorporating the MBPI. Moreover, X-ray diffraction (XRD) patterns showed a peak at 17.4°, and the relative crystallinity decreased with increasing MBPI concentrations. The turbidity determination after 120 h refrigerated storage showed that the addition of MBPI could reduce the retrogradation of NCS gels by interacting with leached amylose. Additionally, the syneresis of NCS/MBPI gels decreased at 14 days of refrigerated storage from 60.53 to 47.87%.
Collapse
|
9
|
Bamboo-Fiber-Reinforced Thermoset and Thermoplastic Polymer Composites: A Review of Properties, Fabrication, and Potential Applications. Polymers (Basel) 2022; 14:polym14071387. [PMID: 35406261 PMCID: PMC9003382 DOI: 10.3390/polym14071387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Natural-fiber-reinforced composites, especially bamboo, are an alternative material to compete with conventional materials. Their environmentally friendly, renewable, low-cost, low-density, non-toxic, and fully biodegradable properties are concerning for researchers because of their advantages over synthetic polymers. This comprehensive review presents the results of work on bamboo fiber composites with special reference to bamboo types, thermoplastic and thermoset polymers matrices, hybrid composites, and their applications. In addition, several studies prove that these properties are very good and efficient in various applications. However, in the development of composite technology, bamboo fiber has certain constraints, especially in moisture conditions. Moisture is one of the factors that reduces the potential of bamboo fiber and makes it a critical issue in the manufacturing industry. Therefore, various efforts have been made to ensure that these properties are not affected by moisture by treating the surface fibers using chemical treatments.
Collapse
|
10
|
Ilyas RA, Zuhri MYM, Aisyah HA, Asyraf MRM, Hassan SA, Zainudin ES, Sapuan SM, Sharma S, Bangar SP, Jumaidin R, Nawab Y, Faudzi AAM, Abral H, Asrofi M, Syafri E, Sari NH. Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers (Basel) 2022; 14:202. [PMID: 35012228 PMCID: PMC8747475 DOI: 10.3390/polym14010202] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Polylactic acid (PLA) is a thermoplastic polymer produced from lactic acid that has been chiefly utilized in biodegradable material and as a composite matrix material. PLA is a prominent biomaterial that is widely used to replace traditional petrochemical-based polymers in various applications owing environmental concerns. Green composites have gained greater attention as ecological consciousness has grown since they have the potential to be more appealing than conventional petroleum-based composites, which are toxic and nonbiodegradable. PLA-based composites with natural fiber have been extensively utilized in a variety of applications, from packaging to medicine, due to their biodegradable, recyclable, high mechanical strength, low toxicity, good barrier properties, friendly processing, and excellent characteristics. A summary of natural fibers, green composites, and PLA, along with their respective properties, classification, functionality, and different processing methods, are discussed to discover the natural fiber-reinforced PLA composite material development for a wide range of applications. This work also emphasizes the research and properties of PLA-based green composites, PLA blend composites, and PLA hybrid composites over the past few years. PLA's potential as a strong material in engineering applications areas is addressed. This review also covers issues, challenges, opportunities, and perspectives in developing and characterizing PLA-based green composites.
Collapse
Affiliation(s)
- R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - M. Y. M. Zuhri
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.A.A.); (E.S.Z.); (S.M.S.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - H. A. Aisyah
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.A.A.); (E.S.Z.); (S.M.S.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - M. R. M. Asyraf
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Malaysia;
| | - S. A. Hassan
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - E. S. Zainudin
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.A.A.); (E.S.Z.); (S.M.S.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - S. M. Sapuan
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.A.A.); (E.S.Z.); (S.M.S.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - S. Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Punjab 144603, India;
- Department of Mechanical Engineering, University Centre for Research and Development and Chandigarh Universiti, Pubjab 140413, India
| | - S. P. Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - R. Jumaidin
- Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Jalan Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia;
| | - Y. Nawab
- Textile Composite Materials Research Group, National Center for Composite Materials, Faculty of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan;
| | - A. A. M. Faudzi
- School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - H. Abral
- Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia;
| | - M. Asrofi
- Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, Indonesia;
| | - E. Syafri
- Department of Agricultural Technology, Agricultural Polytechnic, Payakumbuh 26271, Indonesia;
| | - N. H. Sari
- Mechanical Engineering Department, Faculty of Engineering, University of Mataram, Mataram 83115, Indonesia;
| |
Collapse
|