1
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
2
|
Shi Y, Ren J, Tang H, Chen X. Li Decorated Penta-BCN as a Competitive Reversible Hydrogen Storage Media: A First-Principles Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320983 DOI: 10.1021/acs.langmuir.3c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Efficient storage media are crucial for practical applications of hydrogen, which is the most promising clean energy resource. In addition to possessing a highly reversible gravimetric capacity, the stability and superlight mass of potential storage media should not be underestimated. In this study, we exploit the light mass and unique puckered structure of penta-BCNs to design Li-decorated penta-BCNs for hydrogen storage via a series of first-principles calculations. Our results reveal that Li atoms can form stable chemical complexes with the surface of penta-BCNs with an average binding energy of -2.21 eV without causing deformation. Each Li@penta-BCN unit can physically adsorb up to 27H2 molecules, and the highest hydrogen storage capacity can reach 7.44 wt %, with an average adsorption energy of -0.16 eV/H2, surpassing the target value of 5.5 wt % set by the U.S. Department of Energy. Further elaborate analysis of the electronic structure shows the polarization enhancement mechanism, which is caused by charge transfer from Li atoms to the penta-BCN surface. Our results indicate that Li-decorated penta-BCN could be a promising hydrogen storage material for further application and inspire the theoretical or experimental design of novel materials for clean energy.
Collapse
Affiliation(s)
- Yebai Shi
- School of Electric and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Jie Ren
- Material Science and Engineering Department, City University of Hongkong, Hongkong 999077, China
| | - Hua Tang
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xihao Chen
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 400000, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Butova VV, Zdravkova VR, Burachevskaia OA, Tereshchenko AA, Shestakova PS, Hadjiivanov KI. In Situ FTIR Spectroscopy for Scanning Accessible Active Sites in Defect-Engineered UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101675. [PMID: 37242091 DOI: 10.3390/nano13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Three UiO-66 samples were prepared by solvothermal synthesis using the defect engineering approach with benzoic acid as a modulator. They were characterized by different techniques and their acidic properties were assessed by FTIR spectroscopy of adsorbed CO and CD3CN. All samples evacuated at room temperature contained bridging μ3-OH groups that interacted with both probe molecules. Evacuation at 250 °C leads to the dehydroxylation and disappearance of the μ3-OH groups. Modulator-free synthesis resulted in a material with open Zr sites. They were detected by low-temperature CO adsorption on a sample evacuated at 200 °C and by CD3CN even on a sample evacuated at RT. However, these sites were lacking in the two samples obtained with a modulator. IR and Raman spectra revealed that in these cases, the Zr4+ defect sites were saturated by benzoates, which prevented their interaction with probe molecules. Finally, the dehydroxylation of all samples produced another kind of bare Zr sites that did not interact with CO but formed complexes with acetonitrile, probably due to structural rearrangement. The results showed that FTIR spectroscopy is a powerful tool for investigating the presence and availability of acid sites in UiO-66, which is crucial for its application in adsorption and catalysis.
Collapse
Affiliation(s)
- Vera V Butova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Videlina R Zdravkova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Olga A Burachevskaia
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Andrei A Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Pavletta S Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Konstantin I Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
4
|
Di Martino M, Sessa L, Diana R, Piotto S, Concilio S. Recent Progress in Photoresponsive Biomaterials. Molecules 2023; 28:molecules28093712. [PMID: 37175122 PMCID: PMC10180172 DOI: 10.3390/molecules28093712] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Photoresponsive biomaterials have garnered increasing attention recently due to their ability to dynamically regulate biological interactions and cellular behaviors in response to light. This review provides an overview of recent advances in the design, synthesis, and applications of photoresponsive biomaterials, including photochromic molecules, photocleavable linkers, and photoreactive polymers. We highlight the various approaches used to control the photoresponsive behavior of these materials, including modulation of light intensity, wavelength, and duration. Additionally, we discuss the applications of photoresponsive biomaterials in various fields, including drug delivery, tissue engineering, biosensing, and optical storage. A selection of significant cutting-edge articles collected in recent years has been discussed based on the structural pattern and light-responsive performance, focusing mainly on the photoactivity of azobenzene, hydrazone, diarylethenes, and spiropyrans, and the design of smart materials as the most targeted and desirable application. Overall, this review highlights the potential of photoresponsive biomaterials to enable spatiotemporal control of biological processes and opens up exciting opportunities for developing advanced biomaterials with enhanced functionality.
Collapse
Affiliation(s)
- Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
5
|
Chen X, Hou W, Zhai F, Cheng J, Yuan S, Li Y, Wang N, Zhang L, Ren J. Reversible Hydrogen Storage Media by g-CN Monolayer Decorated with NLi 4: A First-Principles Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:647. [PMID: 36839015 PMCID: PMC9964983 DOI: 10.3390/nano13040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
A two-dimensional graphene-like carbon nitride (g-CN) monolayer decorated with the superatomic cluster NLi4 was studied for reversible hydrogen storage by first-principles calculations. Molecular dynamics simulations show that the g-CN monolayer has good thermal stability at room temperature. The NLi4 is firmly anchored on the g-CN monolayer with a binding energy of -6.35 eV. Electronic charges are transferred from the Li atoms of NLi4 to the g-CN monolayer, mainly due to the hybridization of Li(2s), C(2p), and N(2p) orbitals. Consequently, a spatial local electrostatic field is formed around NLi4, leading to polarization of the adsorbed hydrogen molecules and further enhancing the electrostatic interactions between the Li atoms and hydrogen. Each NLi4 can adsorb nine hydrogen molecules with average adsorption energies between -0.152 eV/H2 and -0.237 eV/H2. This range is within the reversible hydrogen storage energy window. Moreover, the highest achieved gravimetric capacity is up to 9.2 wt%, which is superior to the 5.5 wt% target set by the U.S. Department of Energy. This study shows that g-CN monolayers decorated with NLi4 are a good candidate for reversible hydrogen storage.
Collapse
Affiliation(s)
- Xihao Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Wenjie Hou
- School of Computer Science and Technology, Northwestern Polytechnical University, Xian 710129, China
| | - Fuqiang Zhai
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jiang Cheng
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Shuang Yuan
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yihan Li
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ning Wang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Liang Zhang
- School of Electric and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Jie Ren
- Material Science and Engineering Department, City University of Hongkong, Hongkong 999077, China
| |
Collapse
|
6
|
Cui X, Ye D, Wei J, Du X, Wang P, Li J. Controlled Thermal Release of L-Menthol with Cellulose-Acetate-Fiber-Shelled Metal-Organic Framework. Molecules 2022; 27:6013. [PMID: 36144758 PMCID: PMC9502463 DOI: 10.3390/molecules27186013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Fragrances have been widely used in many customer products to improve the sensory quality and cover flavor defects. The key to the successful application of fragrance is to realize controlled fragrance release, which relies on the use of an appropriate carrier for fragrance. An ideal fragrance carrier helps to achieve the stable storage and controlled release of fragrance. In this work, a novel composite fragrance carrier with MIL-101 (Cr) as the fragrance host and cellulose acetate fiber (CAF) as the protective shell was developed. The encapsulation effect of MIL-101 (Cr) and the protective function of the CAF shell significantly improved the storage stability of L-menthol (LM). Only 5 wt % of LM was lost after 40 days of storage at room temperature. Encapsulated LM could also be effectively released upon heating due to the thermal responsiveness of CAF. In addition, the composite carrier was highly stable with neglectable Cr leaching under different conditions. The results of this work showed that the developed composite carrier could be a promising carrier for the thermally triggered release of fragrance.
Collapse
Affiliation(s)
- Xinjiao Cui
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Donghao Ye
- Wuhan Marine Electric Propulsion Research Institute, Wuhan 430064, China
| | - Jiankun Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaodi Du
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Pengzhao Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junsheng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Saura-Sanmartin A. Photoresponsive Metal-Organic Frameworks as Adjustable Scaffolds in Reticular Chemistry. Int J Mol Sci 2022; 23:7121. [PMID: 35806126 PMCID: PMC9266399 DOI: 10.3390/ijms23137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The easy and remote switching of light makes this stimulus an ideal candidate for a large number of applications, among which the preparation of photoresponsive materials stands out. The interest of several scientists in this area in order to achieve improved functionalities has increase parallel to the growth of the structural complexity of these materials. Thus, metal-organic frameworks (MOFs) turned out to be ideal scaffolds for light-responsive ligands. This review is focused on the integration of photoresponsive organic ligands inside MOF crystalline arrays to prepare enhanced functional materials. Besides the summary of the preparation, properties and applications of these materials, an overview of the future outlook of this research area is provided.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Campus de Espinardo, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
8
|
Thangarasu S, Oh TH. Impact of Polymers on Magnesium-Based Hydrogen Storage Systems. Polymers (Basel) 2022; 14:2608. [PMID: 35808653 PMCID: PMC9269507 DOI: 10.3390/polym14132608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
In the present scenario, much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the HES (production, storage and utilization). Comparatively, considerable attention needs to be provided in the hydrogen storage systems (HSS) because of physical-based storage (compressed gas, cold/cryo compressed and liquid) issues such as low gravimetric/volumetric density, storage conditions/parameters and safety. In material-based HSS, a high amount of hydrogen can be effectively stored in materials via physical or chemical bonds. In different hydride materials, Mg-based hydrides (Mg-H) showed considerable benefits such as low density, hydrogen uptake and reversibility. However, the inferior sorption kinetics and severe oxidation/contamination at exposure to air limit its benefits. There are numerous kinds of efforts, like the inclusion of catalysts that have been made for Mg-H to alter the thermodynamic-related issues. Still, those efforts do not overcome the oxidation/contamination-related issues. The developments of Mg-H encapsulated by gas-selective polymers can effectively and positively influence hydrogen sorption kinetics and prevent the Mg-H from contaminating (air and moisture). In this review, the impact of different polymers (carboxymethyl cellulose, polystyrene, polyimide, polypyrrole, polyvinylpyrrolidone, polyvinylidene fluoride, polymethylpentene, and poly(methyl methacrylate)) with Mg-H systems has been systematically reviewed. In polymer-encapsulated Mg-H, the polymers act as a barrier for the reaction between Mg-H and O2/H2O, selectively allowing the H2 gas and preventing the aggregation of hydride nanoparticles. Thus, the H2 uptake amount and sorption kinetics improved considerably in Mg-H.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
9
|
Huang W, Liu F, Wang K, Sidorenko A, Bei M, Zhang Z, Fang W, Li M, Gu Y, Ke S. Sc(OTf)3-catalyzed synthesis of polysubstituted furans from acylacetonitriles and renewable acetol. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|