1
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
2
|
Siribanluehan N, Wattanachai P. Preparation and Characterization of Durian Husk-Based Biocomposite Films Reinforced With Nanocellulose From Corn Husk and Pineapple Leaf. Biopolymers 2024; 115:e23619. [PMID: 39115118 DOI: 10.1002/bip.23619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 11/22/2024]
Abstract
This research explores the integration of corn husk nanocellulose (CHNc) and pineapple leaf nanocellulose (PLNc) as reinforcing agents in a carboxymethyl cellulose-based film derived from durian husk (CMCDH). Through a solvent-casting method, composite films were fabricated with varying nanocellulose contents (15, 30, and 45 wt%). Analysis using Fourier transform infrared spectroscopy and x-ray diffraction confirmed the effectiveness of alkaline and bleaching treatments in eliminating noncellulosic components. Transmission electron microscopy image revealed the rod-like morphology of CHNc and PLNc, with dimensions approximately 206.5 × 7.2 nm and 150.7 × 6.5 nm, respectively. The inclusion of nanocellulose decreased the transparency of CMCDH films while enhancing their tensile strength, thermal stability, and water vapor transmission rate. Notably, CMCDH/PLNc(30%) exhibited the highest tensile strength at 5.06 ± 0.83 MPa, representing a remarkable 220% increase compared to CMCDH biofilm. Thermogravimetric analysis and differential scanning calorimeter results indicated that nanocellulose incorporation delayed the film's decomposition temperature by approximately 10°C. Moreover, CMCDH/PLNc(30%) demonstrated the lowest water vapor transmission rate, marking a 20% improvement. However, the film's properties were compromised at the highest nanocellulose content (45 wt%) due to observed fiber aggregation, as revealed by scanning electron microscopy analysis.
Collapse
Affiliation(s)
- Nattapron Siribanluehan
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Piyachat Wattanachai
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| |
Collapse
|
3
|
Soltani M, Farhadi A, Rajabi S, Homayouni-Tabrizi M, Hussein FS, Mohammadian N. Folic acid-modified nanocrystalline cellulose for enhanced delivery and anti-cancer effects of crocin. Sci Rep 2024; 14:13985. [PMID: 38886450 PMCID: PMC11183259 DOI: 10.1038/s41598-024-64758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Crocin is a carotenoid compound in saffron with anti-cancer properties. However, its therapeutic application is limited by its low absorption, bioavailability, and stability, which can be overcome through nanocarrier delivery systems. This study used surface-modified Nano-crystalline cellulose (NCC) to deliver crocin to cancer cells. NCC modified with CTAB were loaded with crocin and then conjugated with folic acid (NCF-CR-NPs). The synthesized nanoparticles (NPs) were characterized using FTIR, XRD, DLS, and FESEM. The crystallinity index of NCC was 66.64%, higher than microcrystalline cellulose (61.4%). The crocin loading and encapsulation efficiency in NCF-CR-NPs were evaluated. Toxicity testing by MTT assay showed that NCF-CR-NPs had higher toxicity against various cancer cell lines, including colon cancer HT-29 cells (IC50 ~ 11.6 μg/ml), compared to free crocin. Fluorescent staining, flow cytometry, and molecular analysis confirmed that NCF-CR-NPs induced apoptosis in HT-29 cells by increasing p53 and caspase 8 expression. The antioxidant capacity of NCF-CR-NPs was also evaluated using ABTS and DPPH radical scavenging assays. NCF-CR-NPs exhibited high free radical scavenging ability, with an IC50 of ~ 46.5 μg/ml for ABTS. In conclusion, this study demonstrates the potential of NCF-CR-NPs to deliver crocin to cancer cells effectively. The NPs exhibited enhanced anti-cancer and antioxidant activities compared to free crocin, making them a promising nanocarrier system for crocin-based cancer therapy.
Collapse
Affiliation(s)
- Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Amin Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Rajabi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Navid Mohammadian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
4
|
Sumarago EC, dela Cerna MFM, Leyson AKB, Tan NPB, Magsico KF. Production and Characterization of Nanocellulose from Maguey ( Agave cantala) Fiber. Polymers (Basel) 2024; 16:1312. [PMID: 38794505 PMCID: PMC11125682 DOI: 10.3390/polym16101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Plant fibers have been studied as sources of nanocellulose due to their sustainable features. This study investigated the effects of acid hydrolysis parameters, reaction temperature, and acid concentration on nanocellulose yield from maguey (Agave cantala) fiber. Nanocellulose was produced from the fibers via the removal of non-cellulosic components through alkali treatment and bleaching, followed by strong acid hydrolysis for 45 min using sulfuric acid (H2SO4). The temperature during acid hydrolysis was 30, 40, 50, and 60 °C, and the H2SO4 concentration was 40, 50, and 60 wt. % H2SO4. Results showed that 53.56% of raw maguey fibers were isolated as cellulose, that is, 89.45% was α-cellulose. The highest nanocellulose yield of 81.58 ± 0.36% was achieved from acid hydrolysis at 50 °C using 50 wt. % H2SO4, producing nanocellulose measuring 8-75 nm in diameter and 72-866 nm in length, as confirmed via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. Fourier-transform infrared spectroscopy (FTIR) analysis indicated the chemical transformation of fibers throughout the nanocellulose production process. The zeta potential analysis showed that the nanocellulose had excellent colloidal stability with a highly negative surface charge of -37.3 mV. Meanwhile, X-ray diffraction (XRD) analysis validated the crystallinity of nanocellulose with a crystallinity index of 74.80%. Lastly, thermogravimetric analysis (TGA) demonstrated that the inflection point attributed to the cellulose degradation of the produced nanocellulose is 311.41 °C.
Collapse
Affiliation(s)
- Erwin C. Sumarago
- Department of Chemical Engineering, University of San Carlos, Cebu City 6000, Philippines; (E.C.S.); (M.F.M.d.C.); (A.K.B.L.)
| | - Mary Frahnchezka M. dela Cerna
- Department of Chemical Engineering, University of San Carlos, Cebu City 6000, Philippines; (E.C.S.); (M.F.M.d.C.); (A.K.B.L.)
| | - Andrea Kaylie B. Leyson
- Department of Chemical Engineering, University of San Carlos, Cebu City 6000, Philippines; (E.C.S.); (M.F.M.d.C.); (A.K.B.L.)
| | - Noel Peter B. Tan
- Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, Iloilo City 5000, Philippines;
| | - Kendra Felizimarie Magsico
- Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, Iloilo City 5000, Philippines;
| |
Collapse
|
5
|
Rani P, Pahwa R, Verma V, Bhatia M. Preparation, characterization, and evaluation of ketoconazole-loaded pineapple cellulose green nanofiber gel. Int J Biol Macromol 2024; 262:130221. [PMID: 38365159 DOI: 10.1016/j.ijbiomac.2024.130221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The present study involves the isolation of cellulose nanofibers from pineapple crown waste by a combined alkali-acid treatment method. The extracted pineapple nanofibers were characterized by Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance, high-resolution transmission electron microscopy, and dynamic light scattering. The extracted pineapple nanofibers were then incorporated in Carbopol 934P containing ketoconazole to prepare a ketoconazole-loaded pineapple nanofibrous gel. The prepared gel formulation was evaluated for viscosity, spreadability, extrudibility, pH, drug content, and texture profile analysis. The anticipated gel formulation was further evaluated by in vitro drug release (98.57 ± 0.58 %), ex vivo drug permeation, cytotoxicity, and histopathological studies. The permeation of the drug through skin determined by the ex-vivo diffusion study was found to be 38.27 % with a flux rate of 4.06 ± 0.26 μg/cm2/h. Further, the cytotoxicity study of pineapple nanofiber and ketoconazole-loaded nanofiber gel displayed no cytotoxic on healthy vero cells in the concentration range from 10 to 80 μg/ml. The histopathological analysis exhibited no signs of distress and inflammation. In conclusion, ketoconazole-loaded pineapple nanofiber gel could be considered as a promising delivery system for topical applications.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, (Haryana), India
| | - Rimpy Pahwa
- Amity Institute of Pharmacy, Amity University, Noida-201303, (Uttar Pradesh), India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar-125001, (Haryana), India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, (Haryana), India.
| |
Collapse
|
6
|
Gokulkumar S, Suyambulingam I, Divakaran D, Priyadharshini GS, Aravindh M, Iyyadurai J, Edwards MS, Siengchin S. Facile exfoliation and physicochemical characterization of biomass-based cellulose derived from Lantana aculeata leaves for sustainable environment. Macromol Res 2023; 31:1163-1178. [DOI: 10.1007/s13233-023-00197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 01/06/2025]
|
7
|
Deng Y, Pan J, Yang X, Yang S, Chi H, Yang X, Qu X, Sun S, You L, Hou C. Dual roles of nanocrystalline cellulose extracted from jute ( Corchorus olitorius L.) leaves in resisting antibiotics and protecting probiotics. NANOSCALE ADVANCES 2023; 5:6435-6448. [PMID: 38024324 PMCID: PMC10662138 DOI: 10.1039/d3na00345k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/14/2023] [Indexed: 12/01/2023]
Abstract
Antibiotics can cure diseases caused by bacterial infections, but their widespread use can have some side effects, such as probiotic reduction. There is an urgent need for such agents that can not only alleviate the damage caused by antibiotics, but also maintain the balance of the gut microbiota. In this study, we first characterized the nanocrystalline cellulose (NCC) extracted from plant jute (Corchorus olitorius L.) leaves. Next, we evaluated the protective effect of jute NCC and cellulose on human model gut bacteria (Lacticaseibacillus rhamnosus and Escherichia coli) under antibiotic stress by measuring bacterial growth and colony forming units. We found that NCC is more effective than cellulose in adsorbing antibiotics and defending the gut bacteria E. coli. Interestingly, the low-dose jute NCC clearly maintained the balance of key gut bacteria like Snodgrassella alvi and Lactobacillus Firm-4 in bees treated with tetracycline and reduced the toxicity caused by antibiotics. It also showed a more significant protective effect on human gut bacteria, especially L. rhamnosus, than cellulose. This study first demonstrated that low-dose NCC performed satisfactorily as a specific probiotic to mitigate the adverse effects of antibiotics on gut bacteria.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Jiangpeng Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences Beijing 100093 P. R. China
- Graduate School of Chinese Academy of Agricultural Sciences Beijing 100081 P. R. China
| | - Haiyang Chi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiaoxin Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Shitao Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Linfeng You
- Department of Food and Biotechnology Engineering, Chongqing Technology and Business University Chongqing 400067 P. R. China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| |
Collapse
|
8
|
Fitriani F, Aprilia S, Bilad MR, Arahman N, Usman A, Huda N, Kobun R. Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology. Polymers (Basel) 2022; 14:polym14153006. [PMID: 35893973 PMCID: PMC9332505 DOI: 10.3390/polym14153006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.
Collapse
Affiliation(s)
- Fitriani Fitriani
- Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Sri Aprilia
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence: (S.A.); (N.H.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei;
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: (S.A.); (N.H.)
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|