1
|
Baskar S, Sidhaarth KRA, Mangaleshwaran L, Lakkaboyana SK, Trilaksana H, Kalla RMN, Lee J, Atanase LI, Kazi M, Praveenkumar S. Elimination of nickel ions in a packed column using clamshell waste as an adsorbent. Sci Rep 2025; 15:32. [PMID: 39747931 PMCID: PMC11696491 DOI: 10.1038/s41598-024-82267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The present investigation assessed the viability of utilizing a powdered clam shell in continuous adsorption to eliminate nickel ions from simulated wastewater. The breakthrough curves (BTC) were analyzed by altering the Q (inlet flow rate) in a glass column (ID 5 cm, H 35 cm) with a multi-port and filled with the powdered clamshell adsorbent (PCSA). The PCSA's nickel adsorption efficiency was maximum (87.68%) with Q = 8 mL/min at a bed length (H) of 25 cm with 1.05 mg/g adsorption capacity. Moreover, the mass transfer zone (MTZ) and idle bed length (Lu) were estimated from the corresponding BTC. The values of MTZ and Lu demonstrated fluctuations in response to changes in bed length, suggesting the presence of non-ideal circumstances. The validity of the Thomas model for predicting column dynamics was established, and the associated model parameters were assessed. Additionally, the parameters of the BDST model were assessed in order to aid in calculating the sufficient depth for a packed bed column (PBC) while scaling up. Therefore, a metal removal process from industrial effluent can be efficiently achieved by utilizing a PBC of powdered clamshell adsorbent.
Collapse
Affiliation(s)
- S Baskar
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India.
| | - K R Aswin Sidhaarth
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India
| | - L Mangaleshwaran
- Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Chennai, Tamil Nadu, India
| | - Sivarama Krishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India.
| | - Herri Trilaksana
- Physics Department, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
| | - Reddi Mohan Naidu Kalla
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Leonard I Atanase
- Faculty of Medicine, "Apollonia" University of Iasi, Pacurari Street, No. 11, Iasi, 700511, Romania
- Academy of Romanian Scientists, Bucharest, 050045, Romania
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Seepana Praveenkumar
- Department of Nuclear and Renewable Energy Sources, Ural Federal University, Yekaterinburg, 620002, Russia
| |
Collapse
|
2
|
Tuble KAQ, Omisol CJM, Abilay GY, Tomon TRB, Aguinid BJM, Dumancas GG, Malaluan RM, Lubguban AA. Synergistic effect of phytic acid and eggshell bio-fillers on the dual-phase fire-retardancy of intumescent coatings applied on cellulosic substrates. CHEMOSPHERE 2024; 358:142226. [PMID: 38704039 DOI: 10.1016/j.chemosphere.2024.142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.
Collapse
Affiliation(s)
- Kent Andrew Q Tuble
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Materials & Resources Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Christine Joy M Omisol
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Gerson Y Abilay
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Materials & Resources Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Tomas Ralph B Tomon
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Blessy Joy M Aguinid
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | | | - Roberto M Malaluan
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Arnold A Lubguban
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines.
| |
Collapse
|
3
|
Ma DX, Yin GZ, Ye W, Jiang Y, Wang N, Wang DY. Exploiting Waste towards More Sustainable Flame-Retardant Solutions for Polymers: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2266. [PMID: 38793331 PMCID: PMC11123196 DOI: 10.3390/ma17102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The development of sustainable flame retardants is gaining momentum due to their enhanced safety attributes and environmental compatibility. One effective strategy is to use waste materials as a primary source of chemical components, which can help mitigate environmental issues associated with traditional flame retardants. This paper reviews recent research in flame retardancy for waste flame retardants, categorizing them based on waste types like industrial, food, and plant waste. The paper focuses on recent advancements in this area, focusing on their impact on the thermal stability, flame retardancy, smoke suppression, and mechanical properties of polymeric materials. The study also provides a summary of functionalization methodologies used and key factors involved in modifying polymer systems. Finally, their major challenges and prospects for the future are identified.
Collapse
Affiliation(s)
- De-Xin Ma
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.-X.M.); (Y.J.); (N.W.)
| | - Guang-Zhong Yin
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Wen Ye
- Sino-Spanish Joint Research Center for Advanced Materials Technology, Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai 200062, China;
- Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai 200062, China
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, 28906 Madrid, Spain
| | - Yan Jiang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.-X.M.); (Y.J.); (N.W.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - Na Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.-X.M.); (Y.J.); (N.W.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - De-Yi Wang
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain;
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, 28906 Madrid, Spain
| |
Collapse
|
4
|
Calovi M, Rossi S. Assessing the Impact of Sepiolite-Based Bio-Pigment Infused with Indigo Extract on Appearance and Durability of Water-Based White Primer. MATERIALS (BASEL, SWITZERLAND) 2024; 17:941. [PMID: 38399192 PMCID: PMC10889954 DOI: 10.3390/ma17040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
The objective of this study is to evaluate how two varying amounts of sepiolite-based powder, infused with indigo extract, affect the appearance and durability of a water-based, white primer. To examine the influence of this eco-friendly pigment on the coatings' overall appearance, assessments were performed for color, gloss, and surface roughness. Additionally, the coatings were investigated through optical and electron microscopic observations, to evaluate the distribution of the pigment within the polymer matrix. The effect of the pigment on the coating's durability was assessed through accelerated tests, including exposure in a salt spray chamber and a UV-B chamber. These tests aimed to evaluate the emergence of defects and changes in the appearance of the samples over time. Furthermore, the impact of different quantities of sepiolite-based powder on the coating's ability to act as a barrier was assessed using liquid resistance tests and contact angle measurements. These evaluations aimed to understand how the coating responded to various liquids and its surface properties concerning repellency or absorption. In essence, this study underscores the considerable influence of the eco-friendly pigment, demonstrating its capacity to introduce unique color and texture variations in the paint. Moreover, the inclusion of the pigment has enhanced the coating's color stability, its ability to act as a barrier, and its overall durability when exposed to harsh environments.
Collapse
Affiliation(s)
| | - Stefano Rossi
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| |
Collapse
|
5
|
Lee SH, Lee SG, Lee JS, Ma BC. Understanding the Flame Retardant Mechanism of Intumescent Flame Retardant on Improving the Fire Safety of Rigid Polyurethane Foam. Polymers (Basel) 2022; 14:polym14224904. [PMID: 36433031 PMCID: PMC9696838 DOI: 10.3390/polym14224904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Combinations of multiple inorganic fillers have emerged as viable synergistic agents for boosting the flame retardancy of intumescent flame retardant (IFR) polymer materials. However, few studies on the effect of multiple inorganic fillers on the flame retardant behavior of rigid polyurethane (RPU) foam have been carried out. In this paper, a flame retardant combination of aluminum hydroxide (ATH) and traditional flame retardants ammonium polyphosphate (APP), pentaerythritol (PER), melamine cyanurate (MC), calcium carbonate (CC), and expandable graphite (EG) was incorporated into RPU foam to investigate the synergistic effects of the combination of multiple IFR materials on the thermal stability and fire resistance of RPU foam. Scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) revealed that 8 parts per hundred polyols by weight (php) filler concentrations were compatible with RPU foam and yielded an increased amount of char residue compared to the rest of the RPU samples. The flame retardancy of multiple fillers on intumescent flame retardant RPU foam was also investigated using cone calorimeter (CCTs) and limiting oxygen index (LOI) tests, which showed that RPU/IFR1 (APP/PER/MC/EG/CC/ATH) had the best flame retardant performance, with a low peak heat release rate (PHRR) of 82.12 kW/m2, total heat release rate (THR) of 15.15 MJ/m2, and high LOI value of 36%. Furthermore, char residue analysis revealed that the use of multiple fillers contributed to the generation of more intact and homogeneous char after combustion, which led to reduced decomposition of the RPU foam and hindered heat transfer between the gas and condensed phases.
Collapse
|
6
|
Understanding the Influence of Gypsum upon a Hybrid Flame Retardant Coating on Expanded Polystyrene Beads. Polymers (Basel) 2022; 14:polym14173570. [PMID: 36080646 PMCID: PMC9460870 DOI: 10.3390/polym14173570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
A low-cost and effective flame retarding expanded polystyrene (EPS) foam was prepared herein by using a hybrid flame retardant (HFR) system, and the influence of gypsum was studied. The surface morphology and flame retardant properties of the synthesized flame retardant EPS were characterized using scanning electron microscopy (SEM) and cone calorimetry testing (CCT). The SEM micrographs revealed the uniform coating of the gypsum-based HFR on the EPS microspheres. The CCT and thermal conductivity study demonstrated that the incorporation of gypsum greatly decreases the peak heat release rate (PHRR) and total heat release (THR) of the flame retarding EPS samples with acceptable thermal insulation performance. The EPS/HFR with a uniform coating and the optimum amount of gypsum provides excellent flame retardant performance, with a THR of 8 MJ/m2, a PHRR of 53.1 kW/m2, and a fire growth rate (FIGRA) of 1682.95 W/m2s. However, an excessive amount of gypsum weakens the flame retardant performance. The CCT results demonstrate that a moderate gypsum content in the EPS/HFR sample provides appropriate flame retarding properties to meet the fire safety standards.
Collapse
|
7
|
Zhong F, Chen C, Zheng J, Li L, Wen X. Zinc ion cross-linked sodium alginate modified hexagonal boron nitride to enhance the flame retardant properties of composite coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Mohd Sabee MMS, Itam Z, Beddu S, Zahari NM, Mohd Kamal NL, Mohamad D, Zulkepli NA, Shafiq MD, Abdul Hamid ZA. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers (Basel) 2022; 14:2911. [PMID: 35890685 PMCID: PMC9324192 DOI: 10.3390/polym14142911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides an intensive overview of flame retardant coating systems. The occurrence of flame due to thermal degradation of the polymer substrate as a result of overheating is one of the major concerns. Hence, coating is the best solution to this problem as it prevents the substrate from igniting the flame. In this review, the descriptions of several classifications of coating and their relation to thermal degradation and flammability were discussed. The details of flame retardants and flame retardant coatings in terms of principles, types, mechanisms, and properties were explained as well. This overview imparted the importance of intumescent flame retardant coatings in preventing the spread of flame via the formation of a multicellular charred layer. Thus, the intended intumescence can reduce the risk of flame from inherently flammable materials used to maintain a high standard of living.
Collapse
Affiliation(s)
- Mohd Meer Saddiq Mohd Sabee
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zarina Itam
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Salmia Beddu
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nazirul Mubin Zahari
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Daud Mohamad
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Norzeity Amalin Zulkepli
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Mohamad Danial Shafiq
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| |
Collapse
|