1
|
Jašek V, Montag P, Menčík P, Přikryl R, Kalendová A, Figalla S. Chemically recycled commercial polyurethane (PUR) foam using 2-hydroxypropyl ricinoleate as a glycolysis reactant for flexibility-enhanced automotive applications. RSC Adv 2024; 14:29966-29978. [PMID: 39309646 PMCID: PMC11413739 DOI: 10.1039/d4ra04972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
The automotive industry uses polyurethane (PUR) foam core in the vehicle headliner composite. The sector demands recycling suggestions to reduce its scrap and decrease the expenses. This work investigated the PUR depolymerization using synthesized 2-hydroxypropyl ricinoleate (2-HPR) from castor oil and incorporated the liquid recyclate (REC) into the original PUR foam. The synthesis of 2-HPR yielded 97.5%, and the following PUR depolymerization (via glycolysis) reached 87.2% yield. The synthesized products were verified by GPC, FTIR, ESI-MS, and 1H NMR cross-analysis. The laboratory experiments (565 mL) included rheological, structural, and reactivity investigations. Added 30% REC content decreased the apparent viscosity to 109 mPa s from standard 274 mPa s. The reactivity of the 30% REC system increased by 51.2% based on the cream time due to the high REC amine value. The block foam density of systems with 15% REC and above decreased by 14.8%. A system with 20% REC content was the most prospective for up-scale. The industrially significant up-scale (125 L) was performed successfully, and the tensile and flexural test specimens were sampled from the up-scaled foam. The tensile characteristic (tensile strength 107 ± 8 kPa and elongation 9.2 ± 0.7%) and flexural characteristic (flexural strength 156 ± 12 kPa and flexural strain at deformation limit 23.4 ± 0.6%) confirmed that the REC incorporation in the standard PUR foam improves the applicable significant mechanical properties and assures the manufacture improve.
Collapse
Affiliation(s)
- Vojtěch Jašek
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology 61200 Brno Czech Republic
| | - Petr Montag
- Tomas Bata University in Zlin, Faculty of Technology, Department of Polymer Engineering 76001 Zlín Czech Republic
- BASF Ltd Czech Republic
| | - Přemysl Menčík
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology 61200 Brno Czech Republic
| | - Radek Přikryl
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology 61200 Brno Czech Republic
| | - Alena Kalendová
- Tomas Bata University in Zlin, Faculty of Technology, Department of Polymer Engineering 76001 Zlín Czech Republic
| | - Silvestr Figalla
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology 61200 Brno Czech Republic
| |
Collapse
|
2
|
Tu J, Yao N, Ling Y, Zhang X, Song X. Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels. SENSORS (BASEL, SWITZERLAND) 2023; 23:3008. [PMID: 36991719 PMCID: PMC10056416 DOI: 10.3390/s23063008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
In order to improve the accuracy of detection results of debonding defects of aluminum alloy thin plate, the nonlinear ultrasonic technology is used to detect the simulated defect samples, aiming at problems such as near surface blind region caused by the interaction of incident wave, reflected wave and even second harmonic wave in a short time due to the small thickness of thin plates. An integral method based on energy transfer efficiency is proposed to calculate the nonlinear ultrasonic coefficient to characterize the debonding defects of thin plates. A series of simulated debonding defects of different sizes were made using aluminum alloy plates with four thicknesses of 1 mm, 2 mm, 3 mm and 10 mm. By comparing the traditional nonlinear coefficient with the integral nonlinear coefficient proposed in this paper, it is verified that both methods can quantitatively characterize the size of debonding defects. The nonlinear ultrasonic testing technology based on energy transfer efficiency has higher testing accuracy for thin plates.
Collapse
Affiliation(s)
- Jun Tu
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (J.T.)
- Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China
| | - Nan Yao
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (J.T.)
- Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China
| | - Yi Ling
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (J.T.)
- Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China
| | - Xu Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (J.T.)
- Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China
| | - Xiaochun Song
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (J.T.)
- Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China
| |
Collapse
|
3
|
Zhao X, Jin R, Niu Z, Gao Y, Hu S. Fabrication of Polyurethane Elastomer/Hindered Phenol Composites with Tunable Damping Property. Int J Mol Sci 2023; 24:ijms24054662. [PMID: 36902089 PMCID: PMC10003405 DOI: 10.3390/ijms24054662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Vibration and noise-reduction materials are indispensable in various fields. Polyurethane (PU)-based damping materials can dissipate the external mechanical and acoustic energy through molecular chain movements to mitigate the adverse effects of vibrations and noise. In this study, PU-based damping composites were obtained by compositing PU rubber prepared using 3-methyltetrahydrofuran/tetrahydrofuran copolyether glycol, 4,4'-diphenylmethane diisocyanate, and trimethylolpropane monoallyl ether as raw materials with hindered phenol, viz., and 3,9-bis{2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)proponyloxy]-1,1-dimethylethyl}-2,4,8,10-tetraoxaspiro[5.5]undecane (AO-80). Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and tensile tests were conducted to evaluate the properties of the resulting composites. The glass transition temperature of the composite increased from -40 to -23 °C, and the tan δMax of the PU rubber increased by 81%, from 0.86 to 1.56 when 30 phr of AO-80 was added. This study provides a new platform for the design and preparation of damping materials for industrial applications and daily life.
Collapse
Affiliation(s)
- Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruiheng Jin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihao Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangyang Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Y.G.); (S.H.)
| | - Shikai Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Y.G.); (S.H.)
| |
Collapse
|
4
|
Nabeel M, Varga M, Kuzsella L, Fiser B, Vanyorek L, Viskolcz B. The Effect of Pore Volume on the Behavior of Polyurethane-Foam-Based Pressure Sensors. Polymers (Basel) 2022; 14:polym14173652. [PMID: 36080726 PMCID: PMC9459917 DOI: 10.3390/polym14173652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
In this work, three different polyurethane (PU) foams were prepared by mixing commonly used isocyanate and polyol with different isocyanate indices (1.0:0.8, 1.0:1.0, 1.0:1.1). Then, the prepared polyurethane foam samples were coated by dip-coating with a fixed ratio of nitrogen-doped, bamboo-shaped carbon nanotubes (N-BCNTs) to obtain pressure sensor systems. The effect of the isocyanate index on the initial resistance, pressure sensitivity, gauge factor (GF), and repeatability of the N-BCNT/PU pressure sensor systems was studied. The pore volume was crucial in finetuning the PU-foam-based sensors ability to detect large strain. Furthermore, large pore volume provides suitable spatial pores for elastic deformation. Sensors with large pore volume can detect pressure of less than 3 kPa, which could be related to their sensitivity in the high range. Moreover, by increasing the pore volume, the electrical percolation threshold can be achieved with a minimal addition of nanofillers. On the other hand, PU with a smaller pore volume is more suitable to detect pressure above 3 kPa. The developed sensors have been successfully applied in many applications, such as motion monitoring and vibration detection.
Collapse
Affiliation(s)
- Mohammed Nabeel
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Ministry of Science and Technology—Materials Research Directorate, Baghdad 10011, Iraq
| | - Miklós Varga
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - László Kuzsella
- Institute of Materials Science and Technology, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine
| | - László Vanyorek
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Correspondence:
| |
Collapse
|
5
|
Żukowska W, Kosmela P, Wojtasz P, Szczepański M, Piasecki A, Barczewski R, Barczewski M, Hejna A. Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams' Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165728. [PMID: 36013863 PMCID: PMC9412428 DOI: 10.3390/ma15165728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 05/11/2023]
Abstract
Material innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated into a flexible foamed PU matrix as a cost-effective waste-based filler. A two-step prepolymer method of foams manufacturing was applied to maximize the potential of applied formulation changes. The impact of the GTR content on the foams' processing, chemical, and cellular structure, as well as static and dynamic mechanical properties, thermal stability, sound suppression ability, and thermal insulation performance, was investigated. The introduction of GTR caused a beneficial reduction in the average cell diameter, from 263.1 µm to 144.8-188.5 µm, implicating a 1.0-4.3% decrease in the thermal conductivity coefficient. Moreover, due to the excellent mechanical performance of the car tires-the primary application of GTR-the tensile performance of the foams was enhanced despite the disruption of the cellular structure resulting from the competitiveness between the hydroxyl groups of the applied polyols and on the surface of the GTR particles. The tensile strength and elongation at break were increased by 10 and 8% for 20 parts by weight GTR addition. Generally, the presented work indicates that GTR can be efficiently applied as a filler for flexible PU foams, which could simultaneously enhance their performance, reduce costs, and limit environmental impacts due to the application of waste-based material.
Collapse
Affiliation(s)
- Wiktoria Żukowska
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Paulina Kosmela
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Paweł Wojtasz
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mariusz Szczepański
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznan, Poland
| | - Roman Barczewski
- Institute of Applied Mechanics, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznan, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Correspondence:
| |
Collapse
|
6
|
Piao J, Ren J, Wang Y, Feng T, Wang Y, Lu M, Jiao C, Chen X. Green biobased P‐N coating: Towards waste‐minimization flame retardant flexible polyurethane foam. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junxiu Piao
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Jinyong Ren
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Yaofei Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Tingting Feng
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Yaxuan Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Mingjie Lu
- State Key Laboratory of Petroleum Pollution Control China University of Petroleum (East China) Qingdao Shandong People's Republic of China
| | - Chuanmei Jiao
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Xilei Chen
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| |
Collapse
|
7
|
Merillas B, Villafañe F, Rodríguez-Pérez MÁ. A New Methodology Based on Cell-Wall Hole Analysis for the Structure-Acoustic Absorption Correlation on Polyurethane Foams. Polymers (Basel) 2022; 14:polym14091807. [PMID: 35566975 PMCID: PMC9105932 DOI: 10.3390/polym14091807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Polyurethane foams with a hybrid structure between closed cell and open cell were fabricated and fully characterized. Sound absorption measurements were carried out in order to assess their acoustic performance at different frequency ranges. The cellular structure of these systems was studied in detail by defining some novel structural parameters that characterize the cell wall openings such as the average surface of holes (Sh), the number of holes (h), and the area percentage thereof (%HCW). Therefore, these parameters allow to analyze quantitatively the effect of different structural factors on the acoustic absorption performance. It has been found that the parameters under study have a remarkable influence on the normalized acoustic absorption coefficient at different frequency ranges. In particular, it has been demonstrated that increasing the surface of the holes and the percentage of holes in the cell walls allows increasing the acoustic absorption of these types of foams, a promising statement for developing highly efficient acoustic insulators. Additionally, we could determine that a suitable minimum value of hole surface to reach the highest sound dissipation for these samples exists.
Collapse
Affiliation(s)
- Beatriz Merillas
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain;
- Correspondence:
| | - Fernando Villafañe
- GIR MIOMeT-IU Cinquima-Inorganic Chemistry, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain;
| | - Miguel Ángel Rodríguez-Pérez
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain;
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|