1
|
Ponte ED, de Almeida Ignatowicz A, Volpato GR, Taffarel JV, Takahashi PA, Luiz RM, Silva FEB, Fraga GN, Dragunski DC, Zarpelon-Schutz AC, Alves HJ, Bernardi-Wenzel J. Production and Characterization of Electrospun Chitosan, Nanochitosan and Hyaluronic Acid Membranes for Skin Wound Healing. J Biomed Mater Res B Appl Biomater 2024; 112:e35485. [PMID: 39324392 DOI: 10.1002/jbm.b.35485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
The development of new wound dressings made from biomaterials, which offer a better cost-benefit ratio and accelerate the healing process, is increasing nowadays. Various biopolymers can be electrospun to form functional membranes for wound healing. Therefore, in this study, chitosan and nanochitosan membranes with or without hyaluronic acid were prepared using the electrospinning technique, characterized and evaluated in the healing of skin wounds in rats. Chitosan and nanochitosan solutions, with or without hyaluronic acid, were prepared at concentrations of 1%-4% using PEO (polyethylene oxide) and subjected to the electrospinning process to obtain membranes characterized by scanning electron microscopy (SEM), mechanical tests, and antimicrobial activity. The healing effect of the membranes was evaluated by monitoring the area of the lesions, contraction of the wounds, histologic analysis, and induction of pro-inflammatory cytokine (IL-1 α and TNF-α) production in rats. The nanochitosan and nanochitosan membranes with hyaluronic acid achieved greater fiber diameter and uniformity, resistance, elasticity, and thermal stability, in addition to good adhesion to the wound bed and permeation capacity. Despite not presenting antimicrobial activity in vitro, they contributed to the production of pro-inflammatory interleukins in the animals tested, provided physical protection, reduced the wound area more markedly until the seventh day of the evaluation, with an acceleration of the healing process and especially when functionalized with hyaluronic acid. These results indicate that the membranes may be promising for accelerating the healing process of chronic wounds in humans.
Collapse
Affiliation(s)
- Edimar Dal Ponte
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
| | | | | | | | | | | | - Felipe Eduardo Bueno Silva
- Laboratório de Materiais e Energias Renováveis (LABMATER), Universidade Federal do Paraná, Setor Palotina, Brazil
| | - Gabriel Nardi Fraga
- Center for Engineering and Exact Sciences, Universidade Estadual do Oeste do Paraná-Campus Toledo, Toledo, Brazil
| | - Douglas Cardoso Dragunski
- Center for Engineering and Exact Sciences, Universidade Estadual do Oeste do Paraná-Campus Toledo, Toledo, Brazil
| | - Ana Carla Zarpelon-Schutz
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
- Medical School-Universidade Federal do Paraná-Campus Toledo, Toledo, Brazil
| | - Helton José Alves
- Laboratório de Materiais e Energias Renováveis (LABMATER), Universidade Federal do Paraná, Setor Palotina, Brazil
| | - Juliana Bernardi-Wenzel
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
- Medical School-Universidade Federal do Paraná-Campus Toledo, Toledo, Brazil
| |
Collapse
|
2
|
Zhou S, He J, Liu Q, Chen T, Guan X, Gao H, Jiang J, Wang J, Peng X, Wu J. Injectable Hydrogel of Chitosan-Octyl Itaconate Conjugate Modulates Inflammatory Response. ACS Biomater Sci Eng 2024; 10:4823-4838. [PMID: 39056337 DOI: 10.1021/acsbiomaterials.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Itaconic acid and its derivative 4-octyl itaconate (OI) represent a novel anti-inflammatory medication that has demonstrated efficacy in multiple inflammation models because of its minimal side effects. Recently, natural polymers conjugated with small molecule drugs, known as polymer-drug conjugates (PDCs), have emerged as a promising approach to sustained drug release. In this work, we reported an approach to prepare a PDC containing an OI and make it into an injectable hydrogel. Chitosan (CS) was selected for PDC synthesis because of its abundant free amino groups that can be conjugated with molecules containing carboxyl groups by carbodiimide chemistry. We used an ethanol/water cosolvent system to synthesize a CS-OI conjugate via EDC/NHS catalysis. The CS-OI conjugate had improved water solubility and unique anti-inflammatory activity and did not show compromised antibacterial activity compared with unmodified CS. Beta-glycerophosphate (β-GP) cross-linked CS-OI hydrogel exhibited good injectability with sustainable OI release and effectively modulated inflammatory response in a rat model. Therefore, this study provides valuable insights into the design of PDC hydrogels with inflammatory modulatory properties.
Collapse
Affiliation(s)
- Shasha Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jibing He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Quan Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, P. R. China
| | - Ting Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangheng Guan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Haihan Gao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jia Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
3
|
Varghese SM, Chowdhury AR, Arnepalli DN, Ranga Rao G. Crosslinked hydrogel-derived carbons activated by trace amounts of aqueous potassium carbonate for carbon dioxide adsorption. BIORESOURCE TECHNOLOGY 2024; 403:130851. [PMID: 38782189 DOI: 10.1016/j.biortech.2024.130851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
A new method for green synthesis of activated carbon using chitosan-based hydrogel precursors is reported. Chitosan-based hydrogel materials are designed to absorb trace amounts of non-toxic and non-corrosive activating agent K2CO3 from dilute aqueous solution. The K2CO3 impregnated hydrogels are further freeze-dried and converted to activated carbons with tuneable pore structure by a single-step pyrolysis. Activated carbon with highest pore volume of 0.76 cm3/g and surface area of 2026 m2/g is obtained by using K2CO3 as low as 0.23 g per gram of chitosan hydrogel. It can adsorb maximum CO2 of 4.2 mmol/g at 25 °C and 1 bar. This study demonstrates that biopolymer hydrogels impregnated with trace amounts of K2CO3 are excellent precursor materials to design high surface area carbons for CO2 capture.
Collapse
Affiliation(s)
- Soniya Mariya Varghese
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India; Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Additi Roy Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dali Naidu Arnepalli
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - G Ranga Rao
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
4
|
Yu P, Wei L, Yang Z, Liu X, Ma H, Zhao J, Liu L, Wang L, Chen R, Cheng Y. Hydrogel Wound Dressings Accelerating Healing Process of Wounds in Movable Parts. Int J Mol Sci 2024; 25:6610. [PMID: 38928316 PMCID: PMC11203733 DOI: 10.3390/ijms25126610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ in the human body and requires proper dressing to facilitate healing after an injury. Wounds on movable parts, such as the elbow, knee, wrist, and neck, usually undergo delayed and inefficient healing due to frequent movements. To better accommodate movable wounds, a variety of functional hydrogels have been successfully developed and used as flexible wound dressings. On the one hand, the mechanical properties, such as adhesion, stretchability, and self-healing, make these hydrogels suitable for mobile wounds and promote the healing process; on the other hand, the bioactivities, such as antibacterial and antioxidant performance, could further accelerate the wound healing process. In this review, we focus on the recent advances in hydrogel-based movable wound dressings and propose the challenges and perspectives of such dressings.
Collapse
Affiliation(s)
- Pengcheng Yu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Liqi Wei
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Zhiqi Yang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Xin Liu
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Hongxia Ma
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Jian Zhao
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Lulu Liu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Lili Wang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Rui Chen
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Yan Cheng
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| |
Collapse
|
5
|
Cojocaru E, Ghitman J, Pircalabioru GG, Zaharia A, Iovu H, Sarbu A. Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties. Polymers (Basel) 2023; 15:2854. [PMID: 37447499 DOI: 10.3390/polym15132854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin-polyethylene glycol-indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
6
|
Capanema NSV, Mansur AAP, Carvalho IC, Carvalho SM, Mansur HS. Bioengineered Water-Responsive Carboxymethyl Cellulose/Poly(vinyl alcohol) Hydrogel Hybrids for Wound Dressing and Skin Tissue Engineering Applications. Gels 2023; 9:166. [PMID: 36826336 PMCID: PMC9956280 DOI: 10.3390/gels9020166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The burden of chronic wounds is growing due to the increasing incidence of trauma, aging, and diabetes, resulting in therapeutic problems and increased medical costs. Thus, this study reports the synthesis and comprehensive characterization of water-responsive hybrid hydrogels based on carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) using citric acid (CA) as the chemical crosslinking agent, with tunable physicochemical properties suitable to be applied as a wound dressing for soft tissue engineering applications. They were produced through an eco-friendly process under mild conditions. The hydrogels were designed and produced with flexible swelling degree properties through the selection of CMC molecular mass (Mw = 250 and 700 kDa) and degree of functionalization (DS = 0.81), degree of hydrolysis of PVA (DH > 99%, Mw = 84-150 kDa) associated with synthesis parameters, CMC/PVA ratio and extension of chemical crosslinking (CA/CMC:PVA ratio), for building engineered hybrid networks. The results demonstrated that highly absorbent hydrogels were produced with swelling degrees ranging from 100% to 5000%, and gel fraction from 40% to 80%, which significantly depended on the concentration of CA crosslinker and the presence of PVA as the CMC-based network modifier. The characterizations indicated that the crosslinking mechanism was mostly associated with the chemical reaction of CA carboxylic groups with hydroxyl groups of CMC and PVA polymers forming ester bonds, rendering a hybrid polymeric network. These hybrid hydrogels also presented hydrophilicity, permeability, and structural features dependent on the degree of crosslinking and composition. The hydrogels were cytocompatible with in vitro cell viability responses of over 90% towards model cell lines. Hence, it is envisioned that this research provides a simple strategy for producing biocompatible hydrogels with tailored properties as wound dressings for assisting chronic wound healing and skin tissue engineering applications.
Collapse
Affiliation(s)
- Nádia Sueli Vieira Capanema
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Alexandra Ancelmo Piscitelli Mansur
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Isadora Cota Carvalho
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Agrícola, Universidade Federal de Lavras, UFLA, Lavras 37203-202, MG, Brazil
- Centro Universitário de Lavras, UNILAVRAS, Lavras 37203-593, MG, Brazil
| | - Sandhra Maria Carvalho
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Herman Sander Mansur
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
7
|
Flake Graphene as an Efficient Agent Governing Cellular Fate and Antimicrobial Properties of Fibrous Tissue Engineering Scaffolds—A Review. MATERIALS 2022; 15:ma15155306. [PMID: 35955241 PMCID: PMC9369702 DOI: 10.3390/ma15155306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022]
Abstract
Although there are several methods for fabricating nanofibrous scaffolds for biomedical applications, electrospinning is probably the most versatile and feasible process. Electrospinning enables the preparation of reproducible, homogeneous fibers from many types of polymers. In addition, implementation of this technique gives the possibility to fabricated polymer-based composite mats embroidered with manifold materials, such as graphene. Flake graphene and its derivatives represent an extremely promising material for imparting new, biomedically relevant properties, functions, and applications. Graphene oxide (GO) and reduced graphene oxide (rGO), among many extraordinary properties, confer antimicrobial properties of the resulting material. Moreover, graphene oxide and reduced graphene oxide promote the desired cellular response. Tissue engineering and regenerative medicine enable advanced treatments to regenerate damaged tissues and organs. This review provides a reliable summary of the recent scientific literature on the fabrication of nanofibers and their further modification with GO/rGO flakes for biomedical applications.
Collapse
|
8
|
Ding X, Zhao L, Khan IM, Yue L, Zhang Y, Wang Z. Emerging chitosan grafted essential oil components: A review on synthesis, characterization, and potential application. Carbohydr Polym 2022; 297:120011. [DOI: 10.1016/j.carbpol.2022.120011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023]
|
9
|
Roy S, Das T, Dasgupta Ghosh B, Goh KL, Sharma K, Chang YW. From Hazardous Waste to Green Applications: Selective Surface Functionalization of Waste Cigarette Filters for High-Performance Robust Triboelectric Nanogenerators and CO 2 Adsorbents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31973-31985. [PMID: 35792904 DOI: 10.1021/acsami.2c06463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article reports a novel and rational approach to convert waste cigarette filters (CFs), one of the largest sources of ocean pollution, into high-performance triboelectric nanogenerators (TENGs) and efficient CO2-capturing adsorbents. CFs are plasticized cellulose acetate, which take several years to degrade. To revalorize these fibers, selective amine surface functionalization is performed (10PAL-20T-CFs). For the proof of concept, when the modified fibers are employed in a TENG, it could generate an output voltage (96.63 V) and current (9.37 μA) that are, respectively, 43 and 8 times higher than those obtained employing the pristine CFs for the nanogenerator. The proposed TENG displays an instantaneous peak power of 3.75 mW, which is higher than that of many recently reported TENGs made from cellulose materials. Moreover, the TENG displayed outstanding durability to humidity and high-performance stability when it is subjected to cyclic loading (i.e., 12,000 cycles of loading-unloading). A 9 cm2 TENG could effectively light up 100 or more colored light-emitting diodes when it is manually pressed. Finally, the modified filter fibers show an excellent CO2 adsorption capacity of 1.93 mmol/g, which is 9.2 times higher than that obtained using the pristine fibers. These results demonstrate that hazardous wastes such as CFs can be upcycled into valuable resources.
Collapse
Affiliation(s)
- Sunanda Roy
- Newcastle University in Singapore, 172A Ang Mo Kio Avenue, Singapore 567739, Singapore
- Department of Polymer & Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh 24701, India
| | - Tanya Das
- Techno India University, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | | | - Kheng Lim Goh
- Newcastle University in Singapore, 172A Ang Mo Kio Avenue, Singapore 567739, Singapore
| | - Kamal Sharma
- Mechanical Engineering, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Young-Wook Chang
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, South Korea
| |
Collapse
|
10
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
11
|
Cojocaru E, Ghitman J, Stan R. Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine. Polymers (Basel) 2022; 14:2647. [PMID: 35808692 PMCID: PMC9269101 DOI: 10.3390/polym14132647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
Gene-based therapy represents the latest advancement in medical biotechnology. The principle behind this innovative approach is to introduce genetic material into specific cells and tissues to stimulate or inhibit key signaling pathways. Although enormous progress has been achieved in the field of gene-based therapy, challenges connected to some physiological impediments (e.g., low stability or the inability to pass the cell membrane and to transport to the desired intracellular compartments) still obstruct the exploitation of its full potential in clinical practices. The integration of gene delivery technologies with electrospun fibrous architectures represents a potent strategy that may tackle the problems of stability and local gene delivery, being capable to promote a controlled and proficient release and expression of therapeutic genes in the targeted cells, improving the therapeutic outcomes. This review aims to outline the impact of electrospun-fibrous-architecture-mediated gene therapy drug delivery, and it emphatically discusses the latest advancements in their formulation and the therapeutic outcomes of these systems in different fields of regenerative medicine, along with the main challenges faced towards the translation of promising academic results into tangible products with clinical application.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitzescu”, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| |
Collapse
|
12
|
Jampilek J, Kralova K. Advances in Biologically Applicable Graphene-Based 2D Nanomaterials. Int J Mol Sci 2022; 23:6253. [PMID: 35682931 PMCID: PMC9181547 DOI: 10.3390/ijms23116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
13
|
Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6030076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Graphene is a unique nanocarbon nanomaterial, frequently explored with polymeric matrices for technical purposes. An indispensable application of polymer/graphene nanocomposites has been observed for membrane technology. This review highlights the design, properties, and promising features of the polymer/graphene nanomaterials and nanocomposite membranes for the pervasion and purification of toxins, pollutants, microbials, and other desired contents. The morphology, pore size, pore structure, water flux, permeation, salt rejection, and other membrane properties are examined. Graphene oxide, an important modified form of graphene, is also utilized in nanocomposite membranes. Moreover, polymer/graphene nanofibers are employed to develop high-performance membranes for methodological purposes. The adaptability of polymer/graphene nanocomposites is observed for water management and purification technologies.
Collapse
|