1
|
Hirun N, Kraisit P, Santhan S. Mixed Micellar Gel of Poloxamer Mixture for Improved Solubilization of Poorly Water-Soluble Ibuprofen and Use as Thermosensitive In Situ Gel. Pharmaceutics 2024; 16:1055. [PMID: 39204400 PMCID: PMC11359337 DOI: 10.3390/pharmaceutics16081055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The aqueous solution of binary mixtures of amphiphilic copolymers is a potential platform for fabricating mixed polymeric micelles for pharmaceutical applications, particularly in developing drug delivery depots for a poorly water-soluble compound. This study fabricated and investigated binary mixtures of poloxamer 403 (P403) and poloxamer 407 (P407) at varying P403:P407 molar ratios to develop a vehicle for the poorly water-soluble compound, using ibuprofen as a model drug. The cooperative formation of mixed micelles was obtained, and the solubility of ibuprofen in the binary mixtures was enhanced compared to the solubility in pure water and an aqueous single P407 solution. The binary mixture with the P403:P407 molar ratio of 0.75:0.25 at a total polymer concentration of 19% w/v exhibited the temperature dependence of micellization and sol-to-gel characteristics of the thermosensitive mixed micellar gels. It possessed suitable micellization and gelation characteristics for in situ gelling systems. The release of ibuprofen from the thermosensitive mixed micellar depots was sustained through a diffusion-controlled mechanism. The findings can aid in formulating binary mixtures of P403 and P407 to achieve the desired properties of mixed micelles and micellar gels.
Collapse
Affiliation(s)
- Namon Hirun
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (P.K.); (S.S.)
| | | | | |
Collapse
|
2
|
Assiri AA, Glover K, Mishra D, Waite D, Vora LK, Thakur RRS. Block copolymer micelles as ocular drug delivery systems. Drug Discov Today 2024; 29:104098. [PMID: 38997002 DOI: 10.1016/j.drudis.2024.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Block copolymer micelles, formed by the self-assembly of amphiphilic polymers, address formulation challenges, such as poor drug solubility and permeability. These micelles offer advantages including a smaller size, easier preparation, sterilization, and superior solubilization, compared with other nanocarriers. Preclinical studies have shown promising results, advancing them toward clinical trials. Their mucoadhesive properties enhance and prolong contact with the ocular surface, and their small size allows deeper penetration through tissues, such as the cornea. Additionally, copolymeric micelles improve the solubility and stability of hydrophobic drugs, sustain drug release, and allow for surface modifications to enhance biocompatibility. Despite these benefits, long-term stability remains a challenge. In this review, we highlight the preclinical performance, structural frameworks, preparation techniques, physicochemical properties, current developments, and prospects of block copolymer micelles as ocular drug delivery systems.
Collapse
Affiliation(s)
- Ahmad A Assiri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK; Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - David Waite
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| | | |
Collapse
|
3
|
Ruhina Rahman SN, Goswami A, Jala A, Venuganti A, Deka A, Borkar RM, Singh V, Das D, Shunmugaperumal T. Studies on cationic ocular emulsions containing bipartitioned oil droplets to codeliver cyclosporin A and etodolac. Nanomedicine (Lond) 2024; 19:1035-1050. [PMID: 38686958 PMCID: PMC11221375 DOI: 10.2217/nnm-2023-0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
Background: To prepare ocular emulsions containing bipartitioned oil droplets to entrap cyclosporin A (0.05% w/w) and etodolac (0.2% w/w) by using castor, olive and silicon oils. Methods: The physicochemical characterizations of prepared emulsions were performed. The drug's biodistribution profiles and pharmacokinetic parameters from emulsions were checked using the ultraperformance liquid chromatography-tandem mass spectrometry method in the ocular tissues of the healthy rabbit eye model. Results: The emulsions displayed 365.13 ± 7.21 nm size and 26.45 ± 2.09 mV zeta potential. The ferrying of two drugs after releasing from emulsions occurred across corneal/conjunctival tissues to enter the vitreous and sclera following a single drop administration into the rabbit's eyes. Conclusion: The dual drug-loaded emulsions were more likely to produce synergistic anti-inflammatory activity for managing moderate-to-severe dry eye disease.
Collapse
Affiliation(s)
- Syed Nazrin Ruhina Rahman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
- Suria Eye Products Pvt. Ltd, BIO-NEST Incubation Centre, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Abhinab Goswami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Animith Venuganti
- Center for Ocular Regeneration, LV Prasad Eye Institute, Hyderabad, 500034, India
| | - Apurba Deka
- Department of Ocular Pathology, Sri Sankaradeva Nethralaya, Guwahati, Assam, 781028, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Vivek Singh
- Center for Ocular Regeneration, LV Prasad Eye Institute, Hyderabad, 500034, India
| | - Dipankar Das
- Department of Ocular Pathology, Sri Sankaradeva Nethralaya, Guwahati, Assam, 781028, India
| | - Tamilvanan Shunmugaperumal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
- Suria Eye Products Pvt. Ltd, BIO-NEST Incubation Centre, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| |
Collapse
|
4
|
Paganini V, Chetoni P, Di Gangi M, Monti D, Tampucci S, Burgalassi S. Nanomicellar eye drops: a review of recent advances. Expert Opin Drug Deliv 2024; 21:381-397. [PMID: 38396342 DOI: 10.1080/17425247.2024.2323208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Research on nanotechnology in medicine has also involved the ocular field and nanomicelles are among the applications developed. This approach is used to increase both the water solubility of hydrophobic drugs and their penetration/permeation within/through the ocular tissues since nanomicelles are able to encapsulate insoluble drug into their core and their small size allows them to penetrate and/or diffuse through the aqueous pores of ocular tissues. AREAS COVERED The present review reports the most significant and recent literature on the use of nanomicelles, made up of both surfactants and amphiphilic polymers, to overcome limitations imposed by the physiology of the eye in achieving a high bioavailability of drugs intended for the therapeutic areas of greatest commercial interest: dry eye, inflammation, and glaucoma. EXPERT OPINION The results of the numerous studies in this field are encouraging and demonstrate that nanomicelles may be the answer to some of the challenges of ocular therapy. In the future, new molecules self-assembling into micelles will be able to meet the regulatory requirements for marketing authorization for their use in ophthalmic formulations.
Collapse
Affiliation(s)
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | | | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| |
Collapse
|
5
|
Sharma A, Singh M, Sharma V, Vashishth A, Raj M, Upadhyay SK, Singh S, Ramniwas S, Dhama K, Sharma AK, Bhatia SK. Current paradigms in employing self-assembled structures: Drug delivery implications with improved therapeutic potential. Colloids Surf B Biointerfaces 2024; 234:113745. [PMID: 38241890 DOI: 10.1016/j.colsurfb.2024.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Recent efforts have focused on developing improved drug delivery systems with enhanced therapeutic efficacy and minimal side effects. Micelles, self-assembled from amphiphilic block copolymers in aqueous solutions, have gained considerable attention for drug delivery. However, there is a need to further enhance their efficiency. These micelles offer benefits like biodegradability, biocompatibility, sustained drug release, and improved patient compliance. Yet, researchers must address stability issues and reduce toxicity. Nanoscale self-assembled structures have shown promise as efficient drug carriers, offering an alternative to conventional methods. Fine-tuning at the monomeric and molecular levels, along with structural modifications, is crucial for optimal drug release profiles. Various strategies, such as entrapping hydrophobic drugs and using polyethylene oxide diblock copolymer micelles to resist protein adsorption and cellular adhesion, protect the hydrophobic core from degradation. The polyethylene oxide corona also provides stealth properties, prolonging blood circulation for extended drug administration. Amphiphilic copolymers are attractive for drug delivery due to their adjustable properties, allowing control over micelle size and morphology. Emerging tools promise complex and multifunctional platforms. This article summarizes about the challenges as far as the use of micelles is concerned, including optimizing performance, rigorous pre-clinical and clinical research, and suggests further improvement for drug delivery efficacy.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India.
| | - Manoj Singh
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India.
| | - Amit Vashishth
- Department of Science and Humanities, SRM Institute of Science & Technology (Deemed to be University) Delhi-NCR Campus, Ghaziabad, UP 201204, India.
| | - Mayank Raj
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sushil K Upadhyay
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sandeep Singh
- Department of Chemistry, Sri Guru Gobind Singh College, Sector -26, Chandigarh, India.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India.
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector 82 A, IT City Rd, Block D, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Shashi Kant Bhatia
- Biotransformation and Biomaterials Lab, Department of Biological Engineering, College of Engineering, KonkukUniversity, Hwayang-dong Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
6
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
7
|
Alhowyan AA, Kalam MA, Iqbal M, Raish M, El-Toni AM, Alkholief M, Almomen AA, Alshamsan A. Mesoporous Silica Nanoparticles Coated with Carboxymethyl Chitosan for 5-Fluorouracil Ocular Delivery: Characterization, In Vitro and In Vivo Studies. Molecules 2023; 28:molecules28031260. [PMID: 36770926 PMCID: PMC9920178 DOI: 10.3390/molecules28031260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
This study investigates the development of topically applied non-invasive amino-functionalized silica nanoparticles (AMSN) and O-Carboxymethyl chitosan-coated AMSN (AMSN-CMC) for ocular delivery of 5-Fluorouracil (5-FU). Particle characterization was performed by the DLS technique (Zeta-Sizer), and structural morphology was examined by SEM and TEM. The drug encapsulation and loading were determined by the indirect method using HPLC. Physicochemical characterizations were performed by NMR, TGA, FTIR, and PXRD. In vitro release was conducted through a dialysis membrane in PBS (pH 7.4) using modified Vertical Franz diffusion cells. The mucoadhesion ability of the prepared nanoparticles was tested using the particle method by evaluating the change in zeta potential. The transcorneal permeabilities of 5-FU from AMNS-FU and AMSN-CMC-FU gel formulations were estimated through excised goat cornea and compared to that of 5-FU gel formulation. Eye irritation and ocular pharmacokinetic studies from gel formulations were evaluated in rabbit eyes. The optimum formulation of AMSN-CMC-FU was found to be nanoparticles with a particle size of 249.4 nm with a polydispersity of 0.429, encapsulation efficiency of 25.8 ± 5.8%, and drug loading capacity of 5.2 ± 1.2%. NMR spectra confirmed the coating of AMSN with the CMC layer. In addition, TGA, FTIR, and PXRD confirmed the drug loading inside the AMSN-CMC. Release profiles showed 100% of the drug was released from the 5-FU gel within 4 h, while AMSN-FU gel released 20.8% of the drug and AMSN-CMC-FU gel released around 55.6% after 4 h. AMSN-CMC-FU initially exhibited a 2.45-fold increase in transcorneal flux and apparent permeation of 5-FU compared to 5-FU gel, indicating a better corneal permeation. Higher bioavailability of AMSN-FU and AMSN-CMC-FU gel formulations was found compared to 5-FU gel in the ocular pharmacokinetic study with superior pharmacokinetics parameters of AMSN-CMC-FU gel. AMSN-CMC-FU showed 1.52- and 6.14-fold higher AUC0-inf in comparison to AMSN-FU and 5-FU gel, respectively. AMSN-CMC-FU gel and AMSN-FU gel were "minimally irritating" to rabbit eyes but showed minimal eye irritation potency in comparison to the 5 FU gel. Thus, the 5-FU loaded in AMSN-CMC gel could be used as a topical formulation for the treatment of ocular cancer.
Collapse
Affiliation(s)
- Adel Ali Alhowyan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Central Lab, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M. El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11495, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo 11865, Egypt
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah A. Almomen
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
8
|
Rahman SNR, Goswami A, Sree A, Jala A, Borkar RM, Shunmugaperumal T. Dual Delivery of Cyclosporin A and Etodolac Using Polymeric Nanocapsules in a Rabbit Eye Model: Ocular Biodistribution and Pharmacokinetic Study. J Ocul Pharmacol Ther 2022; 38:734-744. [PMID: 36355052 DOI: 10.1089/jop.2022.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: Commercially available eye drops are loaded only with a single drug. By using the polymeric nanocapsules, dual delivery of 0.05% w/w cyclosporin A (CsA) and 0.2% w/w etodolac (Edc) was achieved. An ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed for determining simultaneously the biodistribution and pharmacokinetic profile of CsA and Edc in ocular tissues. Methods: After one single drop instillation of nanocapsules into healthy right eyes of rabbits, the eyeballs were enucleated at 5, 15, 30, 60, and 90 min time periods to separate the 5 different ocular tissues. A liquid/liquid extraction method was used for ocular sample extraction using darunavir as internal standard. Using 3 diverse conditions such as bench-top, autosampler, and freeze-thaw, the stability of the analytes at 3 quality control samples in ocular tissues was also checked. Results: Intra- and interday precisions for both CsA and Edc in multiple ocular tissues were <10.32%, and the accuracy was <11.98%. The % bias and % RSD values for CsA and Edc were found within the acceptable limit of ±15%. The highest Cmax values were attained in cornea for both the drugs at 60 min postinstillation time point. Despite molecular size and structural differences, both CsA and Edc after liberation from nanocapsule drops can permeate into the tissues of the anterior as well as posterior segments of the eye. Conclusion: The biodistribution and pharmacokinetic data might help and strengthen our understanding of synergetic anti-inflammatory activity of CsA and Edc from nanocapsules after its ocular topical application for managing keratoconjunctivitis sicca.
Collapse
Affiliation(s)
- Syed Nazrin Ruhina Rahman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Abhinab Goswami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Amoolya Sree
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Tamilvanan Shunmugaperumal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
9
|
Tewari AK, Upadhyay SC, Kumar M, Pathak K, Kaushik D, Verma R, Bhatt S, Massoud EES, Rahman MH, Cavalu S. Insights on Development Aspects of Polymeric Nanocarriers: The Translation from Bench to Clinic. Polymers (Basel) 2022; 14:3545. [PMID: 36080620 PMCID: PMC9459741 DOI: 10.3390/polym14173545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Scientists are focusing immense attention on polymeric nanocarriers as a prominent delivery vehicle for several biomedical applications including diagnosis of diseases, delivery of therapeutic agents, peptides, proteins, genes, siRNA, and vaccines due to their exciting physicochemical characteristics which circumvent degradation of unstable drugs, reduce toxic side effects through controlled release, and improve bioavailability. Polymers-based nanocarriers offer numerous benefits for in vivo drug delivery such as biocompatibility, biodegradability, non-immunogenicity, active drug targeting via surface modification, and controlled release due to their pH-and thermosensitive characteristics. Despite their potential for medicinal use, regulatory approval has been achieved for just a few. In this review, we discuss the historical development of polymers starting from their initial design to their evolution as nanocarriers for therapeutic delivery of drugs, peptides, and genes. The review article also expresses the applications of polymeric nanocarriers in the pharmaceutical and medical industry with a special emphasis on oral, ocular, parenteral, and topical application of drugs, peptides, and genes over the last two decades. The review further examines the practical, regulatory, and clinical considerations of the polymeric nanocarriers, their safety issues, and directinos for future research.
Collapse
Affiliation(s)
- Akhilesh Kumar Tewari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Satish Chandra Upadhyay
- Formulation Research and Development, Mankind Research Centre, Manesar, Gurugram 122050, Haryana, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, Haryana, India
| | - Shailendra Bhatt
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, Haryana, India
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
10
|
Alshememry A, Alkholief M, Abul Kalam M, Raish M, Ali R, Alhudaithi SS, Iqbal M, Alshamsan A. Perspectives of Positively Charged Nanocrystals of Tedizolid Phosphate as a Topical Ocular Application in Rabbits. Molecules 2022; 27:molecules27144619. [PMID: 35889492 PMCID: PMC9325164 DOI: 10.3390/molecules27144619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was the successful utilization of the positively charged nanocrystals (NCs) of Tedizolid Phosphate (TZP) (0.1% w/v) for topical ocular applications. TZP belongs to the 1, 3-oxazolidine-2-one class of antibiotics and has therapeutic potential for the treatment of many drug-resistant bacterial infections, including eye infections caused by MRSA, penicillin-resistant Streptococcus pneumonia and vancomycin-resistant Enterococcus faecium. However, its therapeutic usage is restricted due to its poor aqueous solubility and limited ocular availability. It is a prodrug and gets converted to Tedizolid (TDZ) by phosphatases in vivo. The sterilized NC1 was subjected to antimicrobial testing on Gram-positive bacteria. Ocular irritation and pharmacokinetics were performed in rabbits. Around a 1.29 to 1.53-fold increase in antibacterial activity was noted for NC1 against the B. subtilis, S. pneumonia, S. aureus and MRSA (SA-6538) as compared to the TZP-pure. The NC1-AqS was “practically non-irritating” to rabbit eyes. There was around a 1.67- and 1.43 fold increase in t1/2 (h) and Cmax (ngmL−1) while there were 1.96-, 1.91-, 2.69- and 1.41-times increases in AUC0–24h,AUC0–∞,AUMC0–∞ and MRT0–∞, respectively, which were found by NC1 as compared to TZP-AqS in the ocular pharmacokinetic study. The clearance of TDZ was faster (11.43 mLh−1) from TZP-AqS as compared to NC1 (5.88 mLh−1). Relatively, an extended half-life (t1/2; 4.45 h) of TDZ and the prolonged ocular retention (MRT0–∞; 7.13 h) of NC1 was found, while a shorter half-life (t1/2; 2.66 h) of TDZ and MRT0–∞(t1/2; 5.05 h)was noted for TZP-AqS, respectively. Cationic TZP-NC1 could offer increased transcorneal permeation, which could mimic the improved ocular bioavailability of the drug in vivo. Conclusively, NC1 of TZP was identified as a promising substitute for the ocular delivery of TZP, with better performance as compared to its conventional AqS.
Collapse
Affiliation(s)
- Abdullah Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (M.A.K.); (M.R.); (R.A.); (S.S.A.)
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (M.A.K.); (M.R.); (R.A.); (S.S.A.)
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (M.A.K.); (M.R.); (R.A.); (S.S.A.)
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (M.A.K.); (M.R.); (R.A.); (S.S.A.)
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (M.A.K.); (M.R.); (R.A.); (S.S.A.)
| | - Sulaiman S. Alhudaithi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (M.A.K.); (M.R.); (R.A.); (S.S.A.)
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (M.A.K.); (M.R.); (R.A.); (S.S.A.)
- Correspondence:
| |
Collapse
|
11
|
Fabrication and Characterization of Tedizolid Phosphate Nanocrystals for Topical Ocular Application: Improved Solubilization and In Vitro Drug Release. Pharmaceutics 2022; 14:pharmaceutics14071328. [PMID: 35890223 PMCID: PMC9320520 DOI: 10.3390/pharmaceutics14071328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
Positively charged NCs of TZP (0.1%, w/v) for ocular use were prepared by the antisolvent precipitation method. TZP is a novel 5-Hydroxymethyl-Oxazolidinone class of antibiotic and is effective against many drug-resistant bacterial infections. Even the phosphate salt of this drug is poorly soluble, therefore the NCs were prepared for its better solubility and ocular availability. P188 was found better stabilizer than PVA for TZP-NCs. Characterization of the NCs including the particle-size, PDI, and ZP by Zeta-sizer, while morphology by SEM indicated that the preparation technique was successful to get the optimal sized (151.6 nm) TZP-NCs with good crystalline morphology. Mannitol (1%, w/v) prevented the crystal growth and provided good stabilization to NC1 during freeze-drying. FTIR spectroscopy confirmed the nano-crystallization did not alter the basic molecular structure of TZP. DSC and XRD studies indicated the reduced crystallinity of TZP-NC1, which potentiated its solubility. An increased solubility of TZP-NC1 (25.9 µgmL−1) as compared to pure TZP (18.4 µgmL−1) in STF with SLS. Addition of stearylamine (0.2%, w/v) and BKC (0.01%, w/v) have provided cationic (+29.4 mV) TZP-NCs. Redispersion of freeze-dried NCs in dextrose (5%, w/v) resulted in a clear transparent aqueous suspension of NC1 with osmolarity (298 mOsm·L−1) and viscosity (21.1 cps at 35 °C). Mannitol (cryoprotectant) during freeze-drying could also provide isotonicity to the nano-suspension at redispersion in dextrose solution. In vitro release in STF with SLS has shown relatively higher (78.8%) release of TZP from NC1 as compared to the conventional TZP-AqS (43.4%) at 12 h. TZP-NC1 was physically and chemically stable at three temperatures for 180 days. The above findings suggested that TZP-NC1 would be a promising alternative for ocular delivery of TZP with relatively improved performance.
Collapse
|