1
|
Dong Y, Li Z, Kong H, Ban X, Gu Z, Zhang H, Hong Y, Cheng L, Li C. Correlation analysis of starch molecular structure and film properties via rearrangements of glycosidic linkages by 1,4-α-glucan branching enzyme. Carbohydr Polym 2025; 348:122908. [PMID: 39567168 DOI: 10.1016/j.carbpol.2024.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
The functional characteristics of starch films are significantly influenced by the amylose content and the distribution of the amylopectin chain length. This work used 1,4-α-glucan branching enzyme to molecularly reconstruct corn, pea, and cassava starch in order to examine the association. Films made of both natural and enzyme-modified starch were produced using the casting method. The study investigated the variations in starch films properties and explored the relationship between starch molecular structure and film qualities by correlation analysis. The results showed a significant positive connection (r = 0.954) between the tensile strength and amylose content, as well as a positive correlation (r = 0.939) between the A chains and the elongation at break. The average chain length (r = 0.932) and amylose content (r = 0.902) showed a positive correlation with the degradation temperature, whereas the amylose content (r = -0.946) showed an adverse correlation with the transparency. The B3 chain (r = 0.851) and the average chain length (r = 0.839) both exhibited a positive connection with its contact angle. As a result, our study thoroughly assesses how starch structure affects the characteristics of starch films and offers a fundamental modification pathway for the development of new application areas.
Collapse
Affiliation(s)
- Yilin Dong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Ahari H, Kalateh-Seifari F, Yousefi S. Antimicrobial activity of chitosan /corn starch film incorporated with starch nanocrystals /nettle essential oil nanoemulsion for Eleutheronema tetradactylum fillet preservation. Food Chem X 2025; 25:102085. [PMID: 39758056 PMCID: PMC11698936 DOI: 10.1016/j.fochx.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
This study aimed to estimate the effects of chitosan/ corn starch (CH/ CS equal 62:38) film in combination with nettle essential oil nanoemulsions (0.41 wt% NEONEs) and starch nanocrystals (6 wt% SNCs) on the microbial and qualitative characteristics of the Eleutheronema tetradactylumfillets during refrigeration storage (4 ± 1 °C). The fillets were covered by biopolymeric films (CH/CS, CH/CS/SNCs, CH/CS/ NEONEs, CH/CS/SNCs/NEONEs). The qualitative analysis of refrigerated fillets was performed on days 1, 7, and 10. The incorporation of NEONEs and SNCs into CH/CS made an active film with antimicrobial effects. The decrease in pH (5.89 %), PV (44.72 %), FFA (10.41 %), TVB-N (35.01 %), TBA (27.07 %) and increase in moisture (5.38 %) were observed in the covered fillets by CH/CS/SNCs/NEONEs film in compared to uncovered fillets at 4 °C on day 10. The results revealed that incorporating SNCs (6 %) and NEONEs (0.41 %) into CH/CS could increase the storage time of the refrigerated fish fillets.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran
| | - Fatemeh Kalateh-Seifari
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran
| | - Shima Yousefi
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran
| |
Collapse
|
3
|
ÇOBAN Ö, ÖZCAN K, ENGİN S, TATAR B, SOYLU M. Formulation and Evaluation of Triamcinolone Acetonide-Loaded Oral Disintegrated Film with Different Polymers via Solvent Casting Method. Turk J Pharm Sci 2024; 21:440-448. [PMID: 39569681 PMCID: PMC11600327 DOI: 10.4274/tjps.galenos.2023.37807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2024]
Abstract
Objectives The study aimed to investigate the effect of different polymers and plasticizers on oral disintegrating films (ODFs) containing triamcinolone acetonide (TA), a glucocorticosteroid indicated for the treatment of oral wounds. Materials and Methods Thirteen different formulations with the same amount of polymer and plasticizer were prepared by solvent casting. Briefly, the solutions containing polymer, plasticizer, and other ingredients were poured into Petri dishes and kept at room temperature for 20 hours to obtain ODFs. Physical properties of ODFs such as visual appearance, weight and thickness uniformity, pH, mechanical durability (tensile strength, elongation at break and folded insurance), and disintegration time were assessed and drug content analysis was performed on ODFs. Results Suitable ODFs were produced with hydroxypropyl methylcellulose (HPMC), polyvinyl alcohol, carboxymethylcellulose, gelatin, and pectin, while film integrity was not achieved with polyethyleneglycol 4000 (PEG 4000), chitosan and starch. Glycerin made ODFs more transparent, reduced their thickness, and improved their mechanical properties. On the other hand, PEG 400 reduced the weight variation. Regarding drug content, PEG-containing gelatin-based ODF (ODF10) and pectin-based ODF (ODF12) complied with pharmacopeial limits. In addition, all ODFs except HPMC-based ODFs had an appropriate pH range. Conclusion When all features were evaluated together in terms of the applicability of an ODF to the patient, the most convenient formulation was found to be gelatin-based with PEG 400 ODF (ODF10). In short, patients will benefit from ease of application and transportation and effective therapy with correct dosing with the development of ODF forms of TA for which there are no preparations except for cream, gel, and pomade forms for topical use in Türkiye.
Collapse
Affiliation(s)
- Özlem ÇOBAN
- Karadeniz Technical University Faculty of Pharmacy, Department of Pharmaceutical Technology, Trabzon, Türkiye
| | - Kutsal ÖZCAN
- Karadeniz Technical University Faculty of Pharmacy, Department of Pharmaceutical Technology, Trabzon, Türkiye
| | - Seçkin ENGİN
- Karadeniz Technical University Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye
| | - Buse TATAR
- Karadeniz Technical University Faculty of Pharmacy, Trabzon, Türkiye
| | - Mihriban SOYLU
- Karadeniz Technical University Faculty of Pharmacy, Trabzon, Türkiye
| |
Collapse
|
4
|
Linan LZ, Fakhouri FM, Nogueira GF, Zoppe J, Velasco JI. Benefits of Incorporating Lignin into Starch-Based Films: A Brief Review. Polymers (Basel) 2024; 16:2285. [PMID: 39204505 PMCID: PMC11359989 DOI: 10.3390/polym16162285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polysaccharides are an excellent renewable source for developing food-packing materials. It is expected that these packages can be an efficient barrier against oxygen; can reduce lipid peroxidation, and can retain the natural aroma of a food commodity. Starch has tremendous potential to be explored in the preparation of food packaging; however, due to their high hydrophilic nature, packaging films produced from starch possess poor protective moisture barriers and low mechanical properties. This scenario limits their applications, especially in humid conditions. In contrast, lignin's highly complex aromatic hetero-polymer network of phenylpropane units is known to play a filler role in polysaccharide films. Moreover, lignin can limit the biodegradability of polysaccharides films by a physical barrier, mainly, and by non-productive bindings. The main interactions affecting lignin non-productive bindings are hydrophobic interactions, electrostatic interactions, and hydrogen-bonding interactions, which are dependent on the total phenolic -OH and -COOH content in its chemical structure. In this review, the use of lignin as a reinforcement to improve the biodegradability of starch-based films in wet environments is presented. Moreover, the characteristics of the used lignins, the mechanisms of molecular interaction among these materials, and the sensitive physicochemical parameters for biodegradability detection are related.
Collapse
Affiliation(s)
- Lamia Zuniga Linan
- Department of Chemical Engineering, Federal University of Maranhão (COEQ/UFMA), Av. dos Portugueses 1966, São Luis 65080-805, Brazil
| | - Farayde Matta Fakhouri
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Carrer de Colom 11, 08222 Terrassa-Barcelona, Spain; (J.Z.); (J.I.V.)
| | | | - Justin Zoppe
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Carrer de Colom 11, 08222 Terrassa-Barcelona, Spain; (J.Z.); (J.I.V.)
| | - José Ignacio Velasco
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Carrer de Colom 11, 08222 Terrassa-Barcelona, Spain; (J.Z.); (J.I.V.)
| |
Collapse
|
5
|
Pei J, Palanisamy CP, Srinivasan GP, Panagal M, Kumar SSD, Mironescu M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int J Biol Macromol 2024; 274:133332. [PMID: 38914408 DOI: 10.1016/j.ijbiomac.2024.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania.
| |
Collapse
|
6
|
Singh GP, Bangar SP, Aayush K, Yang T, Verma R, Kuca K, Kumar D, Phimolsiripol Y. Value addition of mango kernel for development and characterization of starch with starch nanoparticles for packaging applications. Int J Biol Macromol 2024; 274:133185. [PMID: 38880462 DOI: 10.1016/j.ijbiomac.2024.133185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present research was conducted to explore the potential of mango kernel starch from the Chaunsa variety to develop starch and starch nanoparticles (SNPs) based films. The investigation included starch isolation from mango kernel followed by the preparation of SNPs by acid hydrolysis and a thorough examination of various physicochemical properties for film formation. The properties of SNPs were found to be distinctly different from those of native starch. SNPs exhibited an aggregated form with an irregular surface, whereas native starch had an oval and elongated shape with a smooth surface. X-ray diffraction (XRD) analysis confirmed that the starch type in SNPs was of the A-type. Additionally, the pasting properties of SNPs were minimal due to the acid hydrolysis process. SNP-based composite film was developed with (5 %) SNP concentration added. This successful incorporation of SNPs enhanced biodegradability, with complete degradation occurring within three weeks. Moreover, the composite films displayed increased burst strength, measuring 1303.51 ± 73.7 g, and lower water vapor transmission rates (WVTR) at (7.40 ± 0.50) × 10-3 g per square meter per second and reduced water solubility at 35.32 ± 3.0 %. This development represents a significant advancement in the field of eco-friendly packaging materials.
Collapse
Affiliation(s)
- Gurvendra Pal Singh
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson 29634, USA; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Krishna Aayush
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rachna Verma
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Dinesh Kumar
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India.
| | | |
Collapse
|
7
|
Daza-Orsini SM, Medina-Jaramillo C, Caicedo-Chacon WD, Ayala-Valencia G, López-Córdoba A. Isolation of taro peel cellulose nanofibers and its application in improving functional properties of taro starch nanocomposites films. Int J Biol Macromol 2024; 273:132951. [PMID: 38848851 DOI: 10.1016/j.ijbiomac.2024.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The current work focuses on developing nanocomposite films using taro starch and cellulose nanofibers extracted from the root's peel. Films were prepared using mixtures of starch, cellulose nanofibers (0 %, 5 %, 10 %, and 15 % w/w), glycerol, and water. Results showed that the addition of cellulose nanofibers increased film thickness, opacity, UV-light barrier capacity, and water swelling percentage. All films showed a typical B-type X-ray diffraction pattern characteristic of semicrystalline materials. FTIR analysis confirmed chemical interactions between the starch chains and the nanofibers, which probably interact through hydrogen bonds. Nanocomposite films exhibited increased tensile strength and reduced strain at break compared to control materials. Films with cellulose nanofibers showed an increase in Young's modulus compared to control ones, with no differences observed between films with cellulose nanofibers at 10 % and 15 %. Furthermore, films with cellulose nanofibers at 5 % and 10 % exhibited lower water vapor permeability than control samples, while those with cellulose nanofibers at 15 % showed an increase in this parameter compared to other materials. These results suggest that incorporating taro cellulose nanofibers is a promising alternative for obtaining taro starch nanocomposites films with improved properties.
Collapse
Affiliation(s)
- Sandra Milena Daza-Orsini
- Grupo de Investigación en Bioeconomía y Sostenibilidad Agroalimentaria, Escuela de Administración de Empresas Agropecuarias, Facultad Seccional Duitama, Universidad Pedagógica y Tecnológica de Colombia, Carrera 18 con Calle 22, Duitama 150461, Colombia; Universidad de la Guajira, Kilómetro 5, Riohacha, La Guajira, Colombia
| | - Carolina Medina-Jaramillo
- Grupo de Investigación en Bioeconomía y Sostenibilidad Agroalimentaria, Escuela de Administración de Empresas Agropecuarias, Facultad Seccional Duitama, Universidad Pedagógica y Tecnológica de Colombia, Carrera 18 con Calle 22, Duitama 150461, Colombia
| | | | - Germán Ayala-Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Alex López-Córdoba
- Grupo de Investigación en Bioeconomía y Sostenibilidad Agroalimentaria, Escuela de Administración de Empresas Agropecuarias, Facultad Seccional Duitama, Universidad Pedagógica y Tecnológica de Colombia, Carrera 18 con Calle 22, Duitama 150461, Colombia.
| |
Collapse
|
8
|
Adhikary ND, Bains A, Tosif MM, Chawla P, Ali N, Ansari MA, Dhull SB, Goksen G. Development of ternary polymeric film based on modified mango seed kernel starch, carboxymethyl cellulose, and gum acacia to extend the shelf-life of bun-bread. Int J Biol Macromol 2024; 273:132915. [PMID: 38844289 DOI: 10.1016/j.ijbiomac.2024.132915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Non-conventional starch sources have attracted substantial attention due to their preferred physicochemical and mechanical properties similar to conventional sources. This study aimed to enhance the mechanical properties of mango seed kernel starch (MSKS) based films reinforced with carboxymethyl cellulose (CMC) and gum acacia (GA). Physical modification of MSKS was carried out using microwave-assisted at 180 W for 1 min. SEM results confirmed the oval and irregular shape of starch. The particle size of native starch (NS) (754.9 ± 20.4 nm) was higher compared to modified starch (MS) 336.6 ± 88.9 nm with a surface charge of -24.80 ± 3.92 to -34.87 ± 3.92 mV, respectively. Several functional groups including hydroxyl (OH) and carboxyl (CH) were confirmed in NS and MS. Different ratios of the MS, NS, CMC, and GA were used for the fabrication of films. Results revealed the higher tensile strength of M/C/G-1 (57.45 ± 0.05 nm) and M/C/G-2 (50.77 ± 0.58), compared to control C-4 (100 % native starch) (4.82 ± 0.04) respectively. The ternary complex provided excellent permeability against moisture and the film with a higher starch concentration confirmed the uniform thickness (0.09-0.10 mm). Furthermore, selected films (M/C/G-1 and M/C/G-2) reduced the microbial growth and weight loss of the bun compared to the control (C-4) film. Thus, the ternary complex maintained the freshness of the bun-bread for 14 days. It can be potentially used as a cost-effective and eco-friendly packaging material for food applications.
Collapse
Affiliation(s)
- Nibedita Das Adhikary
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mansuri M Tosif
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sanju Bala Dhull
- Department of Food Science & Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye.
| |
Collapse
|
9
|
Juan C, Gallo L, Gonzalez Vidal N. Development of Losartan Orally Disintegrating Tablets by Direct Compression: a Cost-Effective Approach to Improve Paediatric Patient's Compliance. AAPS PharmSciTech 2024; 25:79. [PMID: 38589718 DOI: 10.1208/s12249-024-02796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
The development of suitable dosage forms is essential for an effective pharmacological treatment in children. Orally disintegrating tablets (ODTs) are attractive dosage forms that avoid swallowing problems, ensure dosage accuracy and are easy to administer as they disintegrate in the oral cavity. This study aimed to develop ODTs containing losartan potassium (LP) for the treatment of arterial hypertension in children. The ODTs, produced by the cost-effective manufacturing process of direct compression, consisted of a mixture of diluent, superdisintegrant, glidant and lubricant. Five superdisintegrants (croscarmellose sodium, two grades of crospovidone, sodium starch glycolate and pregelatinized starch) were tested (at two concentrations), and combined with three diluents (mannitol, lactose and sorbitol). Thus, thirty formulations were evaluated based on disintegration time, hardness and friability. Two formulations, exhibiting the best results concerning disintegration time (< 30 s), hardness and friability (≤ 1.0%), were selected as the most promising ones for further evaluation. These ODTs presented favourable drug-excipient compatibility, tabletability and flow properties. The in vitro dissolution studies demonstrated 'very rapid' drug release. Preliminary stability studies highlighted the requirement of a protective packaging. All quality properties retained appropriate results after 12 months of storage in airtight containers. In conclusion, the ODTs were successfully developed and characterised, suggesting a potential means to accomplish a final prototype that enables an improvement in childhood arterial hypertension treatment.
Collapse
Affiliation(s)
- Candela Juan
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Loreana Gallo
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Planta Piloto de Ingeniería Química (PLAPIQUI, UNS-CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Noelia Gonzalez Vidal
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Deep D, Kumar Y, Bist Y, Saxena DC. Valorization of guinea grass seed (Megathyrsus maximus): Synthesis and utilization of cellulose microfiber to reinforce esterified and cross-linked guinea starch films. Int J Biol Macromol 2024; 263:130434. [PMID: 38417759 DOI: 10.1016/j.ijbiomac.2024.130434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The present study extracts starch from guinea grass seed and fiber from the starch extraction residue. The fibrous residue was chemically converted into cellulose microfiber (CMF) and used to reinforce the native, esterified and crosslinked guinea starch films. The films were developed with 5 % starch, 40 % glycerol and 0, 2.5, 5, and 10 % CMF based on the dry matter of starch. SEM images of all film samples showed good compatibility of CMF with starch molecules, and no fractures or pores were observed. Adding filler materials to modified starch films slightly increased the film thickness (0.24 to 0.30 mm) due to the high dimensions of CMF, which comprise a significant amount of the composite's volume. A synergetic effect of starch modification and CMF in films decreased the moisture content (21.98 to 9.21 %), water solubility (25.65 to 15.47 %), water vapor permeability (6.96×10-7 to 1.65×10-7g∙mm2∙day∙Pa), and elongation at the break (33.51 to 16.79 %) while increasing the tensile strength (1.84 to 3.85 MPa) and Young's modulus (5.49 to 22.93 MPa). The L* and a* values of the films decreased, and the b* and opacity values of the films increased with the addition of CMF. The XRD graph showed that all films have semicrystalline structures with peaks at 18°, 20°, and 22°, and the degree of crystallinity increases (32.3 to 55.1 %) with CMF. All film samples showed good thermal stability up to 315 °C. In conclusion, esterified starch-based films exhibited superior barrier properties and flexibility. On the contrary, cross-linked starch films demonstrated higher tensile strength and lower water solubility.
Collapse
Affiliation(s)
- Divya Deep
- Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Yogesh Kumar
- Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| | - Yograj Bist
- Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - D C Saxena
- Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| |
Collapse
|
11
|
Moghadas HC, Chauhan R, Smith JS. Application of Plant Oils as Functional Additives in Edible Films and Coatings for Food Packaging: A Review. Foods 2024; 13:997. [PMID: 38611303 PMCID: PMC11011941 DOI: 10.3390/foods13070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Increasing environmental concerns over using petroleum-based packaging materials in the food industry have encouraged researchers to produce edible food packaging materials from renewable sources. Biopolymer-based edible films and coatings can be implemented as bio-based packaging materials for prolonging the shelf life of food products. However, poor mechanical characteristics and high permeability for water vapor limit their practical applications. In this regard, plant oils (POs) as natural additives have a high potential to overcome certain shortcomings related to the functionality of edible packaging materials. In this paper, a summary of the effects of Pos as natural additives on different properties of edible films and coatings is presented. Moreover, the application of edible films and coatings containing POs for the preservation of different food products is also discussed. It has been found that incorporation of POs could result in improvements in packaging's barrier, antioxidant, and antimicrobial properties. Furthermore, the incorporation of POs could significantly improve the performance of edible packaging materials in preserving the quality attributes of various food products. Overall, the current review highlights the potential of POs as natural additives for application in edible food packaging materials.
Collapse
Affiliation(s)
| | | | - J. Scott Smith
- Food Science Institute, Kansas State University, Manhattan, KS 66506, USA; (H.C.M.); (R.C.)
| |
Collapse
|
12
|
Francisco AP, Sganzerla WG, Nochi Castro LE, Cruz Tabosa Barroso TL, da Silva APG, da Rosa CG, Nunes MR, Forster-Carneiro T, Rostagno MA. Pressurized liquid extraction of bioactive compounds from grape peel and application in pH-sensing carboxymethyl cellulose films: A promising material to monitor the freshness of pork and milk. Food Res Int 2024; 179:114017. [PMID: 38342539 DOI: 10.1016/j.foodres.2024.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
This study produced pH-sensing carboxymethyl cellulose (CMC) films functionalized with bioactive compounds obtained by pressurized liquid extraction (PLE) of grape peel to monitor the freshness of pork and milk. A semi-continuous PLE was conducted using hydroethanolic solution (70:30, v/v) at a flow rate of 5 mL/min, 15 MPa, and 60 °C. The films were produced by the casting technique using CMC (2.5 %, w/v), glycerol (1 %, v/v), and functionalized with 10, 30, and 50 % (v/v) grape peel extract. From the results obtained, LC-MS/MS revealed that PLE extracted twenty-seven phenolic compounds. The main phenolic compounds were kaempferol-3-glucoside (367.23 ± 25.88 µg/mL), prunin (270.23 ± 3.62 µg/mL), p-coumaric acid (236.43 ± 26.02 µg/mL), and procyanidin B1 (117.17 ± 7.29 µg/mL). The CMC films presented suitable color and mechanical properties for food packaging applications. The addition of grape peel extract promoted the pH-sensing property, showing the sensitivity of anthocyanins to pH changes. The films functionalized with grape peel extract presented good release control of bioactive compounds, making them suitable for food packaging applications. When applied to monitor the freshness of pork and milk, the films exhibited remarkable color changes associated with the pH of the food during storage. In conclusion, PLE is a sustainable approach to obtaining bioactive compounds from the grape peel, which can be applied in the formulation of pH-sensing films as a promising sustainable material to monitor food freshness during storage.
Collapse
Affiliation(s)
- Ana Paula Francisco
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil; School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - William Gustavo Sganzerla
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Luiz Eduardo Nochi Castro
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil
| | | | | | - Cleonice Gonçalves da Rosa
- University of Planalto Catarinense (UNIPLAC), Graduate Program in Environment and Health, Av. Mal. Castelo Branco, 170 Lages, SC, Brazil
| | - Michael Ramos Nunes
- Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Campus Lages, Rua Heitor Villa Lobos, 222, Lages, SC, Brazil
| | - Tânia Forster-Carneiro
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil
| | - Mauricio A Rostagno
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil.
| |
Collapse
|
13
|
Janik W, Jakubski Ł, Kudła S, Dudek G. Modified polysaccharides for food packaging applications: A review. Int J Biol Macromol 2024; 258:128916. [PMID: 38134991 DOI: 10.1016/j.ijbiomac.2023.128916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Development of new food packaging materials is crucial to reduce the use of single-use plastics and to limit their destructive impact on the environment. Polysaccharides provide an alternative solution to this problem. This paper summarizes and discusses recent research results on the potential of modifying polysaccharides as materials for film and coating applications. Modifications of polysaccharides significantly affect their properties, as well as their application usability. Although modifications of biopolymers for packaging applications have been widely studied, polysaccharides have attracted little attention despite being a prospective, environmentally friendly, and economically viable packaging alternative. Therefore, this paper discusses approaches to the development of biodegradable, polysaccharide-based food packaging materials and focuses on modifications of four polysaccharides, such as starch, chitosan, sodium alginate and cellulose. In addition, these modifications are presented not only in terms of the selected polysaccharide, but also in terms of specific properties, i.e. hydrophilic, barrier and mechanical properties, of polysaccharides. Such a presentation of results makes it much easier to select the modification method to improve the unsatisfactory properties of the material. Moreover, very often it happens that the applied modification improves one and worsens another property, which is also presented in this review.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; Department of Physical Chemistry and Technology of Polymers, Joint Doctoral School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland.
| | - Łukasz Jakubski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Stanisław Kudła
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
14
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Rusu AV, Trif M, Rocha JM. Microbial Secondary Metabolites via Fermentation Approaches for Dietary Supplementation Formulations. Molecules 2023; 28:6020. [PMID: 37630272 PMCID: PMC10458110 DOI: 10.3390/molecules28166020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Food supplementation formulations refer to products that are designed to provide additional nutrients to the diet. Vitamins, dietary fibers, minerals and other functional compounds (such as antioxidants) are concentrated in dietary supplements. Specific amounts of dietary compounds are given to the body through food supplements, and these include as well so-called non-essential compounds such as secondary plant bioactive components or microbial natural products in addition to nutrients in the narrower sense. A significant social challenge represents how to moderately use the natural resources in light of the growing world population. In terms of economic production of (especially natural) bioactive molecules, ways of white biotechnology production with various microorganisms have recently been intensively explored. In the current review other relevant dietary supplements and natural substances (e.g., vitamins, amino acids, antioxidants) used in production of dietary supplements formulations and their microbial natural production via fermentative biotechnological approaches are briefly reviewed. Biotechnology plays a crucial role in optimizing fermentation conditions to maximize the yield and quality of the target compounds. Advantages of microbial production include the ability to use renewable feedstocks, high production yields, and the potential for cost-effective large-scale production. Additionally, it can be more environmentally friendly compared to chemical synthesis, as it reduces the reliance on petrochemicals and minimizes waste generation. Educating consumers about the benefits, safety, and production methods of microbial products in general is crucial. Providing clear and accurate information about the science behind microbial production can help address any concerns or misconceptions consumers may have.
Collapse
Affiliation(s)
- Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania;
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
16
|
Paswan M, Adhikary S, Salama HH, Rusu AV, Zuorro A, Dholakiya BZ, Trif M, Bhattacharya S. Microbial Synthesis of Lactic Acid from Cotton Stalk for Polylactic Acid Production. Microorganisms 2023; 11:1931. [PMID: 37630489 PMCID: PMC10458930 DOI: 10.3390/microorganisms11081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Cotton stalk, a waste product in agriculture, serves as a beneficial, low-cost material as a medium for microbial synthesis of lactic acid as desired for polylactic acid synthesis. Cotton stalk was used as a substrate for microbial lactic acid synthesis, and a novel strain of Lactococcus cremoris was reported to synthesize 51.4 g/L lactic acid using cellulose recovered from the cotton stalk. In total, 18 Lactobacillus isolates were isolated from kitchen waste, soil, sugarcane waste, and raw milk samples screened for maximum lactic acid production. It was found that one of the Lactococcus cremoris isolates was found to synthesize maximum lactic acid at a concentration of 51.4 g/L lactic acid in the hydrolysate prepared from cotton stalk. The upstream process parameters included 10% inoculum size, hydrolysate containing reducing sugars 74.23 g/L, temperature 37 °C, agitation 220 rpm, production age 24 h. Only the racemic (50:50) mixture of D-LA and L-LA (i.e., D/L-LA) is produced during the chemical synthesis of lactic acid, which is undesirable for the food, beverage, pharmaceutical, and biomedical industries because only the L-form is digestible and is not suitable for biopolymer, i.e., PLA-based industry where high optically purified lactic acid is required. Furthermore, polylactic acid was synthesized through direct polycondensation methods using various catalysts such as chitosan, YSZ, and Sb2O3. PLA is biocompatible and biodegradable in nature (its blends and biocomposites), supporting a low-carbon and circular bioeconomy.
Collapse
Affiliation(s)
- Meenakshi Paswan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India; (M.P.); (B.Z.D.)
| | - Sudipto Adhikary
- Process Design and Engineering Cell, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 346002, India;
| | - Heba Hassan Salama
- National Research Centre, Dairy Department, Food Industries and Nutrition Research Institute, 33 El-Buhouth Str. (Former El-Tahrir Str.), Dokki, Giza 12622, Egypt;
| | - Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India; (M.P.); (B.Z.D.)
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany;
| | - Sourish Bhattacharya
- Process Design and Engineering Cell, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 346002, India;
- Academy of Scientific and Innovative Research (AcSIR), Bhavnagar 364002, India
| |
Collapse
|
17
|
Diaz-Baca JA, Salaghi A, Fatehi P. Generation of Sulfonated Lignin-Starch Polymer and Its Use As a Flocculant. Biomacromolecules 2023; 24:1400-1416. [PMID: 36802502 DOI: 10.1021/acs.biomac.2c01437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
This paper reports the polymerization of tall oil lignin (TOL), starch, and 2-methyl-2-propene-1-sulfonic acid sodium salt (MPSA), a sulfonate-containing monomer, in a three-component system to generate flocculants for colloidal systems. By utilizing the advanced 1H, COSY, HSQC, HSQC-TOCSY, and HMBC NMR techniques, it was confirmed that the phenolic substructures of TOL and the anhydroglucose unit of starch were covalently polymerized by the monomer to generate the three-block copolymer. The molecular weight, radius of gyration, and shape factor of the copolymers were fundamentally correlated to the structure of lignin and starch, as well as the polymerization outcomes. The deposition behavior of the copolymer, studied by a quartz crystal microbalance with dissipation (QCM-D) analysis, revealed that the copolymer with a larger molecular weight (ALS-5) deposited more and generated more compact adlayer than the copolymer with a smaller molecular weight on a solid surface. Owing to its higher charge density, molecular weight, and extended coil-like structure, ALS-5 produced larger flocs with faster sedimentation in the colloidal systems, regardless of the extent of agitation and gravitational force. The results of this work provide a new approach to preparing a lignin-starch polymer, i.e., a sustainable biomacromolecule with excellent flocculation performance in colloidal systems.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Ayyoub Salaghi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| |
Collapse
|
18
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
19
|
Venkatachalam K, Rakkapao N, Lekjing S. Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. MEMBRANES 2023; 13:membranes13020161. [PMID: 36837664 PMCID: PMC9967404 DOI: 10.3390/membranes13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/12/2023]
Abstract
Biopolymer-based edible packaging is an effective way of preserving food while protecting the environment. This study developed an edible composite film using chitosan and native glutinous rice starch (NGRS) and incorporated essential oils (EOs) such as garlic, galangal, turmeric, and kaffir lime at fixed concentrations (0.312 mg/mL) to test its physicochemical and antimicrobial properties. The EO-added films were found to significantly improve the overall color characteristics (lightness, redness, and yellowness) as compared to the control film. The control films had higher opacity, while the EO-added films had slightly reduced levels of opacity and produced clearer films. The tensile strength and elongation at break values of the films varied among the samples. The control samples had the highest tensile strength, followed by the turmeric EO-added samples. However, the highest elongation at break value was found in the galangal and garlic EO-added films. The Young's modulus results showed that garlic EO and kaffir lime EO had the lowest stiffness values. The total moisture content and water vapor permeability were very low in the garlic EO-added films. Despite the differences in EOs, the Fourier-transform infrared spectroscopy (FTIR) patterns of the tested films were similar among each other. Microstructural observation of the surface and cross-section of the tested edible film exhibited smooth and fissureless patterns, especially in the EO-added films, particularly in the galangal and kaffir lime EO-added films. The antimicrobial activity of the EO-added films was highly efficient against various gram-positive and gram-negative pathogens. Among the EO-added films, the garlic and galangal EO-added films exhibited superior inhibitory activity against Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas fluorescence, and turmeric and kaffir lime EO-added films showed potential antimicrobial activity against Lactobacillus plantarum and L. monocytogenes. Overall, this study concludes that the addition of EOs significantly improved the physicochemical and antimicrobial properties of the CH-NGRS-based edible films, making them highly suitable for food applications.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
| | - Natthida Rakkapao
- Department of Applied Chemistry, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Center of Excellence in Membrane Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90110, Thailand
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Correspondence:
| |
Collapse
|
20
|
Bhatia S, Al-Harrasi A, Ullah S, Al-Azri MS, Bekhit AEDA, Karam L, Albratty M, Aldawsari MF, Anwer MK. Combined Effect of Drying Temperature and Varied Gelatin Concentration on Physicochemical and Antioxidant Properties of Ginger Oil Incorporated Chitosan Based Edible Films. Foods 2023; 12:364. [PMID: 36673455 PMCID: PMC9857393 DOI: 10.3390/foods12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
In the present work, ginger essential oil (GEO) loaded chitosan (CS) based films incorporated with varying concentrations of gelatin (GE) were fabricated and dried at different conditions (25 °C and 45 °C). The physio-chemical, mechanical and antioxidant potential of the films were determined. Films dried at 45 °C showed better physical attributes and less thickness, swelling degree (SD), moisture content, water vapor permeability (WVP), more transparency, and better mechanical characteristics. Fourier transform infrared spectroscopy (FTIR) revealed the chemical composition and interaction between the functional groups of the film components. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) findings revealed that samples dried at 45 °C had more crystalline structure, were thermally stable, and smoother. Antioxidant results showed that films dried at low temperature showed comparatively more (p < 0.0001) antioxidant activity. Additionally, an increase in gelatin concentration improved the tensile strength and swelling factor (p < 0.05), however, had no significant impact on other parameters. The overall results suggested better characteristics of GEO-loaded CS-GE based edible films when dried at 45 °C.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, Nizwa P.O. Box 33, Oman
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun 248007, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Sana Ullah
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Mohammed Said Al-Azri
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | | | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
21
|
Maltol-Incorporated Acetylated Cassava Starch Films for Shelf-Life-Extension Packaging of Bakery Products. Polymers (Basel) 2022; 14:polym14245342. [PMID: 36559709 PMCID: PMC9782678 DOI: 10.3390/polym14245342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Maltol is widely used as a flavor enhancer in baked goods and has an antimicrobial function. Maltol can also be incorporated into biopolymer films to produce active biodegradable packaging for bakery products. This research investigated the incorporation of 1-10% maltol into acetylated cassava starch films as functional packaging for shelf-life extension of butter cake. Films were determined for morphology, chemical interaction and packaging properties. Infrared absorption indicated H-bonding between starch and maltol, while plasticization effects decreased mechanical relaxation temperature. Microstructures showed enhanced smoothness at up to 3% maltol, while maltol crystallization occurred at higher concentrations, giving non-homogeneous matrices. Tensile strength and elongation at break reduced by 37% and 34%, respectively, with the addition of maltol up to 10%. Maltol concentration modified the hydrophilicity and molecular mobility of the matrices, impacting water vapor and oxygen permeability. Films incorporated with maltol were used as packaging for preservative-free butter cake and delayed visible mold growth at room temperature. Starch films with maltol at 1-5% delayed fungal growth by up to 2.7-times, while films containing 10% maltol inhibited mold growth by 6-times (up to 19 days of storage). Incorporating maltol into starch films produced bioactive materials, extending shelf-life while maintaining the aroma of bakery products.
Collapse
|
22
|
Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application. Polymers (Basel) 2022; 14:polym14224884. [PMID: 36433011 PMCID: PMC9692357 DOI: 10.3390/polym14224884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide-based composite films were developed using mucilage polysaccharides (OLP) and carboxymethyl cellulose (CMC) extracted from okra leafstalk wastes. The rheological properties of biocomposite OLP/CMC film-forming solutions were characterized using the Power-law model, and fabricated films were characterized for their potential food packaging applications. OLP/CMC solutions exhibited pseudo-plastic fluid characteristics and differences in rheological behavior (n, 0.478-0.743), and flow consistency (K, 1.731-9.154) with increasing content of OLP (5 to 30 % w/w of CMC) were associated with variations in the physical, mechanical, and barrier properties of films. Surface hydrophobicity (24%) increased and oxygen (39%) and water vapor (32%) permeability reduced in OLP/CMC films containing up to 10% OLP. Moreover, a higher content of OLP enhanced the antioxidant activity and thermal stability of OLP/CMC films. Subsequently, OLP/CMC was applied as a coating to preserve cherry tomatoes for 14 days at 30 °C. Quality deterioration characterized by high weight loss (22%), firmness loss (74.62%), and discoloration (∆E, 21.26) occurred in uncoated tomatoes and were within unusable/unmarketable limits based on their visual quality score. In contrast, OLP/CMC effectively minimized quality losses, and coated tomatoes exceeded the limit of marketability after 14 days of storage. This study successfully applied value-added polysaccharides derived from okra plant residues for edible food packaging.
Collapse
|
23
|
Popescu PA, Palade LM, Nicolae IC, Popa EE, Miteluț AC, Drăghici MC, Matei F, Popa ME. Chitosan-Based Edible Coatings Containing Essential Oils to Preserve the Shelf Life and Postharvest Quality Parameters of Organic Strawberries and Apples during Cold Storage. Foods 2022; 11:3317. [PMID: 36359930 PMCID: PMC9657762 DOI: 10.3390/foods11213317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 07/29/2023] Open
Abstract
Edible coatings and films have been researched for more than three decades due to their ability to be incorporated with different functional ingredients or compounds as an option to maintain the postharvest quality of fruits and vegetables. The aim of this study was to evaluate the effect of three types of chitosan-based (CH) edible coatings obtained from medium and high molecular weight chitosan, containing ascorbic or acetic acid and sea buckthorn or grape seed essential oils on the physical-chemical and microbiological properties of organic strawberries and apple slices during cold storage at 4 °C and 8 °C. Scanning electron microscope images showed both a smooth structure and a fracture and pore structure on strawberry coatings and a dense and smooth structure on the apple slices coatings. Further, the edible coatings managed to reduce the microbial load of yeasts and molds of the coated strawberries during the storage period. Overall, the treatments preserved the ascorbic acid, total polyphenol content, and antioxidant activity for all the tested samples compared to the control sample, throughout the storage period. In addition, the water activity (aw) of the coated samples presented lower values (0.96-0.98) than the control samples. The obtained results indicate that the developed chitosan-based edible coatings could maintain the postharvest parameters of the tested samples, also leading to their shelf-life prolongation.
Collapse
Affiliation(s)
- Paul-Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Laurentiu Mihai Palade
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintilă Street, District 2, 021102 Bucharest, Romania
| | - Ioana-Cătălina Nicolae
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Amalia Carmen Miteluț
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Mihaela Cristina Drăghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| |
Collapse
|
24
|
Pico C, De la Vega J, Tubón I, Arancibia M, Casado S. Nanoscopic Characterization of Starch Biofilms Extracted from the Andean Tubers Ullucus tuberosus, Tropaeolum tuberosum, Oxalis tuberosa, and Solanum tuberosum. Polymers (Basel) 2022; 14:polym14194116. [PMID: 36236064 PMCID: PMC9573434 DOI: 10.3390/polym14194116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The replacement of synthetic polymers by starch biofilms entails a significant potentiality. They are non-toxic materials, biodegradable, and relatively easy to gather from several sources. However, various applications may require physicochemical properties that might prevent the use of some types of starch biofilms. Causes should be explored at the nanoscale. Here we present an atomic force microscopy surface analysis of starch biofilms extracted from the Andean tubers melloco (Ullucus tuberosus), mashua (Tropaeolum tuberosum), oca (Oxalis tuberosa), and potato (Solanum tuberosum) and relate the results to the macroscopic effects of moisture content, water activity, total soluble matter, water vapor permeability, elastic properties, opacity and IR absorption. Characterization reveals important differences at the nanoscale between the starch-based biofilms examined. Comparison permitted correlating macroscopic properties observed to the topography and tapping phase contrast segregation at the nanoscale. For instance, those samples presenting granular topography and disconnected phases at the nanoscale are associated with less elastic strength and more water molecule affinity. As an application example, we propose using the starch biofilms developed as a matrix to dispose of mouthwash and discover that melloco films are quite appropriate for this purpose.
Collapse
Affiliation(s)
- Cynthia Pico
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
| | | | - Irvin Tubón
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
| | - Mirari Arancibia
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
- Isabrubotanik S.A., Ambato 180150, Ecuador
| | - Santiago Casado
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
- Correspondence: ; Tel.: +593-2400987 (ext. 5509)
| |
Collapse
|
25
|
Bhan C, Asrey R, Meena NK, Rudra SG, Chawla G, Kumar R, Kumar R. Guar gum and chitosan-based composite edible coating extends the shelf life and preserves the bioactive compounds in stored Kinnow fruits. Int J Biol Macromol 2022; 222:2922-2935. [DOI: 10.1016/j.ijbiomac.2022.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
26
|
Long H, Bi Y, Pu L, Xu W, Xue H, Fu G, Prusky D. Preparation of chitosan/ fennel seed essential oil/ starch sodium octenyl succinate composite films for apple fruit preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|