1
|
Gajendran VP, Rajamani S. Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10392-3. [PMID: 39514163 DOI: 10.1007/s12602-024-10392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Postharvest losses in fruits and vegetables exert substantial economic and environmental repercussions. Chemical interventions are being widely utilized for the past six decades which may lead to significant health complications. Bioprotection of fruits and vegetables is the need of the hour in which use of lactic acid bacteria (LAB) with GRAS status predominantly stands out. Incorporation of LAB in postharvest fruits and vegetables suppresses the growth of spoilage organisms by synthesizing various antimicrobial compounds such as bacteriocins, organic acids, hydrogen peroxide (H2O2), exopolysaccharides (EPS), and BLIS. For example, Pediococcus acidilactici, Lactobacillus plantarum, and Limosilactobacillus fermentum convert natural sugars in fruits and vegetables to lactic acid and create an acidic environment that do not favour spoilage organisms. LAB can improve the bioavailability of vitamins and minerals and enrich the phenolic profile and bioactivity components. LAB has remarkable physiological characteristics like resistance towards bacteriophage, proteolytic activity, and polysaccharide production which adds to the safety of foods. They modify the sensory properties and preserve the nutritional quality of fruits and vegetables. They can also perform therapeutic role in the intestinal tract as they tolerate low pH, high salt concentration. Thus application of LAB, whether independently or in conjunction with stabilizing agents as edible coatings, is regarded as an exceptionally promising methodology for ensuring safer consumption of fruits and vegetables. This review addresses the most recent research findings that harness the antagonistic property of lactic acid bacterial metabolites, formulations and coatings containing their bioactive compounds for extended shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Vaishnavi Pratha Gajendran
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Subhashini Rajamani
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
2
|
Wang S, Wu B, Todhanakasem T. Expanding the horizons of levan: from microbial biosynthesis to applications and advanced detection methods. World J Microbiol Biotechnol 2024; 40:214. [PMID: 38789837 DOI: 10.1007/s11274-024-04023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Levan, a β-(2,6)-linked fructose polymer, exhibits diverse properties that impart versatility, rendering it a highly sought-after biopolymer with various industrial applications. Levan can be produced by various microorganisms using sucrose, food industry byproducts and agricultural wastes. Microbial levan represents the most potent cost-effective process for commercial-scale levan production. This study reviews the optimization of levan production by understanding its biosynthesis, physicochemical properties and the fermentation process. In addition, genetic and protein engineering for its increased production and emerging methods for its detection are introduced and discussed. All of these comprehensive studies could serve as powerful tools to optimize levan production and broaden its applications across various industries.
Collapse
Affiliation(s)
- Sijie Wang
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Bo Wu
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture and Rural Affairs, Renmin Rd. S 4-13, Chengdu, 610041, China
| | - Tatsaporn Todhanakasem
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
3
|
Finore I, Dal Poggetto G, Leone L, Cattaneo A, Immirzi B, Corsaro MM, Casillo A, Poli A. Sustainable production of heavy metal-binding levan by a subarctic permafrost thaw lake Pseudomonas strain 2ASCA. Int J Biol Macromol 2024; 268:131664. [PMID: 38636757 DOI: 10.1016/j.ijbiomac.2024.131664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pseudomonas strain 2ASCA isolated in subarctic Québec, Canada, produced a cell membrane bound levan-type exopolymer (yield 1.17 g/L), after incubation in growth media containing 6 % sucrose (w/v) at temperature of 15 °C for 96 h. The objective of this study was to optimize levan production by varying the growth parameters. Moreover, the polymer's chemical characterization has been studied with the aim of increasing knowledge and leading to future applications in many fields, including heavy metal remediation. Higher levan yields (7.37 g/L) were reached by setting up microbial fermentation conditions based on the re-use of the molasses obtained from sugar beet processing. Spectroscopy analyses confirmed the levan-type nature of the exopolymer released by strain 2ASCA, consisting of a β-(2,6)-linked fructose repeating unit. Gel permeation chromatography revealed that the polymer has a molecular weight of 13 MDa. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) showed that the levan sequestered with a strong affinity Cr(III), which has never been previously reported, highlighting an interesting biosorption potential. In addition, SEM analysis revealed the formation of nanoparticles in acidified water solution.
Collapse
Affiliation(s)
- Ilaria Finore
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Giovanni Dal Poggetto
- Consiglio Nazionale delle Ricerche, Institute of Polymers, Composites and Biomaterial (IPCB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Luigi Leone
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Andrea Cattaneo
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy
| | - Barbara Immirzi
- Consiglio Nazionale delle Ricerche, Institute of Polymers, Composites and Biomaterial (IPCB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Na, Italy.
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Na, Italy.
| | - Annarita Poli
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| |
Collapse
|
4
|
Wu X, Zhang Y, Zhang B, Tian H, Liang Y, Dang H, Zhao Y. Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea. Foods 2023; 12:4242. [PMID: 38231678 DOI: 10.3390/foods12234242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, Fu-brick tea (FBT) was used for kombucha preparation. The succession of microbial community structures, changes in physicochemical properties, and the volatiles were investigated during the kombucha fermentation. The sequencing analysis showed that Komagataeibacter was the most predominant bacterium. Aspergillus and Zygosaccharomyces were the dominant fungi before fermentation whereas Zygosaccharomyces and Derkella were the dominant fungi after 3 days of fermentation. The physicochemical analysis revealed that acetic acid, glucuronic acid, and polyphenols increased by 10.22 g/L, 0.08 g/L, and 177.40 mg/L, respectively, by the end of fermentation. The GC-MS analysis showed that a total of 49 volatile compounds were detected during the fermentation. Moreover, there were great differences in volatile components among the kombucha samples with different fermentation times. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation network analysis. The results suggested that Komagataeibacter, Aspergillus, Zygosaccharomyces, and Dekkera were closely related to the main volatile compounds of FBT kombucha. The results in this study may provide deep understanding for constructing the microbiota and improving the quality of FBT kombucha.
Collapse
Affiliation(s)
- Xiaoya Wu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Zhang
- Research Center of Fruit and Vegetable Deep-Processing Technology, Xi'an 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Liang
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Román-Camacho JJ, García-García I, Santos-Dueñas IM, García-Martínez T, Mauricio JC. Latest Trends in Industrial Vinegar Production and the Role of Acetic Acid Bacteria: Classification, Metabolism, and Applications-A Comprehensive Review. Foods 2023; 12:3705. [PMID: 37835358 PMCID: PMC10572879 DOI: 10.3390/foods12193705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Vinegar is one of the most appreciated fermented foods in European and Asian countries. In industry, its elaboration depends on numerous factors, including the nature of starter culture and raw material, as well as the production system and operational conditions. Furthermore, vinegar is obtained by the action of acetic acid bacteria (AAB) on an alcoholic medium in which ethanol is transformed into acetic acid. Besides the highlighted oxidative metabolism of AAB, their versatility and metabolic adaptability make them a taxonomic group with several biotechnological uses. Due to new and rapid advances in this field, this review attempts to approach the current state of knowledge by firstly discussing fundamental aspects related to industrial vinegar production and then exploring aspects related to AAB: classification, metabolism, and applications. Emphasis has been placed on an exhaustive taxonomic review considering the progressive increase in the number of new AAB species and genera, especially those with recognized biotechnological potential.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| |
Collapse
|
6
|
Keerthashalini P, Sobanadevi V, Uppuluri KB. Deep eutectic solvent assisted recovery of high molecular weight levan from an isolated Neobacillus pocheonensis BPSCM4. Prep Biochem Biotechnol 2023; 54:407-418. [PMID: 37632396 DOI: 10.1080/10826068.2023.2245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
The present study demonstrates the usage of deep eutectic solvent to recover microbial levan from the clarified fermented broth. The classic ethanol precipitation method for levan recovery is expensive because ethanol can be utilized as a biofuel. Production of ethanol consumes more energy and is not easily recycled. As a result, the current work concentrates on using environmentally friendly solvents for levan recovery. Deep Eutectic Solvents (DES) are greener and can replace ethanol from the microbial polysaccharides precipitation. Thus the proposed approach is environment friendly, technically feasible, reliable and economically viable. The levan was produced from a microbial isolate of aged sugarcane molasses, recovered using traditional ethanol and proposed DES (Choline Chloride and Ethylene Glycol) assisted precipitation. The levan-producing strain was characterized and identified as Neobacillus pocheonensis BPSCM4. The DES-precipitated levan has a high molecular weight of levan, 1.54 × 106 KDa, compared with the ethanol-precipitated levan, 4.246 KDa. The high molecular weight of DES-precipitated levan is due to the low viscosity and hydrogen interaction of ChCl:EG with the levan present in the fermented broth. Further, the optimization enhanced the levan yield to 32.56 g/L when the sucrose concentration was 250 g/L.
Collapse
Affiliation(s)
- P Keerthashalini
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - V Sobanadevi
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Kiran Babu Uppuluri
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
7
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
8
|
Brugnoli M, La China S, Lasagni F, Romeo FV, Pulvirenti A, Gullo M. Acetic acid bacteria in agro-wastes: from cheese whey and olive mill wastewater to cellulose. Appl Microbiol Biotechnol 2023; 107:3729-3744. [PMID: 37115254 DOI: 10.1007/s00253-023-12539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
In this study, cheese whey and olive mill wastewater were investigated as potential feedstocks for producing bacterial cellulose by using acetic acid bacteria strains. Organic acids and phenolic compounds composition were assayed by high-pressure liquid chromatography. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction were used to investigate modifications in bacterial cellulose chemical and morphological structure. Cheese whey was the most efficient feedstock in terms of bacterial cellulose yield (0.300 g of bacterial cellulose/gram of carbon source consumed). Bacterial cellulose produced in olive mill wastewater presented a more well-defined network compared to pellicles produced in cheese whey, resulting in a smaller fiber diameter in most cases. The analysis of bacterial cellulose chemical structure highlighted the presence of different chemical bonds likely to be caused by the adsorption of olive mill wastewater and cheese whey components. The crystallinity ranged from 45.72 to 80.82%. The acetic acid bacteria strains used in this study were characterized by 16S rRNA gene sequencing, allowing to assign them to Komagataeibacter xylinus and Komagataeibacter rhaeticus species. This study proves the suitability to perform sustainable bioprocesses for producing bacterial cellulose, combining the valorisation of agro-wastes with microbial conversions carried out by acetic acid bacteria. The high versatility in terms of yield, morphology, and fiber diameters obtained in cheese whey and olive mill wastewater contribute to set up fundamental criteria for developing customized bioprocesses depending on the final use of the bacterial cellulose. KEY POINTS: • Cheese whey and olive mill wastewater can be used for bacterial cellulose production. • Bacterial cellulose structure is dependent on the culture medium. • Komagataeibacter strains support the agro-waste conversion in bacterial cellulose.
Collapse
Affiliation(s)
- Marcello Brugnoli
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Salvatore La China
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Federico Lasagni
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Flora Valeria Romeo
- Research Centre for Olive, Fruit and Citrus Crops (CREA), Acireale, 95024, Italy
| | - Andrea Pulvirenti
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Maria Gullo
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy.
| |
Collapse
|
9
|
Wünsche J, Schmid J. Acetobacteraceae as exopolysaccharide producers: Current state of knowledge and further perspectives. Front Bioeng Biotechnol 2023; 11:1166618. [PMID: 37064223 PMCID: PMC10097950 DOI: 10.3389/fbioe.2023.1166618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Exopolysaccharides formation against harmful biotic and abiotic environmental influences is common among bacteria. By using renewable resources as a substrate, exopolysaccharides represent a sustainable alternative to fossil-based polymers as rheological modifiers in food, cosmetics, and pharmaceutical applications. The family of Acetobacteraceae, traditionally associated with fermented food products, has demonstrated their ability to produce a wide range of structural and functional different polymers with interesting physicochemical properties. Several strains are well known for their production of homopolysaccharides of high industrial importance, such as levan and bacterial cellulose. Moreover, some Acetobacteraceae are able to form acetan-like heteropolysaccharides with a high structural resemblance to xanthan. This mini review summarizes the current knowledge and recent trends in both homo- and heteropolysaccharide production by Acetobacteraceae.
Collapse
|
10
|
Antioxidant Capacities and Polyphenol Contents of Kombucha Beverages Based on Vine Tea and Sweet Tea. Antioxidants (Basel) 2022; 11:antiox11091655. [PMID: 36139729 PMCID: PMC9495320 DOI: 10.3390/antiox11091655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Kombucha beverage is commonly prepared by black tea infusion fermentation without tea residues, and possesses various health benefits. In this paper, kombucha beverages of two non-Camellia sinensis teas, including vine tea (Ampelopsisgrossedentata) and sweet tea (Rubus suavissimus), were studied for the first time. The antioxidant activities and polyphenol contents of kombucha beverages were evaluated by ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, and Folin-Ciocalteu method, respectively. In addition, effects of tea residues on antioxidant capacities of kombucha beverages were evaluated. The results showed that kombucha beverages from vine tea and sweet tea possessed strong antioxidant activities (especially vine tea kombucha), and fermentation with tea residues could significantly increase antioxidant capacities (maximum increase of 38%) and total phenolic content (maximum increase of 55%) of two kombucha beverages compared with those without tea residues. Moreover, the sensory evaluations showed that the sensory evaluation scores of kombucha with tea residues could be improved compared with those without tea residues. Furthermore, the concentrations of several bioactive components in the kombucha beverages were detected by high-performance liquid chromatography. These kombucha beverages could be used for prevention of several diseases with related of oxidative stress.
Collapse
|
11
|
Anti-Spoilage Activity and Exopolysaccharides Production by Selected Lactic Acid Bacteria. Foods 2022; 11:foods11131914. [PMID: 35804730 PMCID: PMC9265762 DOI: 10.3390/foods11131914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, eight lactic acid bacteria (LAB) strains, previously isolated from traditional and gluten-free sourdoughs, and selected for their potential in improving the sensory and rheological quality of bakery products, were screened against some common spoilage agents. The anti-mould activity was tested using strains of the species Fusarium graminearum, Aspergillus flavus, Penicillium paneum and Aspergillus niger. Regarding the antibacterial activity, it was assessed against four strains of the species Escherichia coli, Campylobacter jejuni, Salmonella typhimurium and Listeria monocytogenes. Furthermore, LAB strains were evaluated for their ability to produce exopolysaccharides, which are gaining considerable attention for their functional properties and applicability in different food industrial applications. A strain-specific behaviour against the moulds was observed. In particular, F. graminearum ITEM 5356 was completely inhibited by all the LAB strains. Regarding the antibacterial activity, the strains Leuconostoc citreum UMCC 3011, Lactiplantibacillus plantarum UMCC 2996, and Pediococcus pentosaceus UMCC 3010 showed wide activity against the tested pathogens. Moreover, all the LAB strains were able to produce exopolysaccharides, which were preliminarily characterized. The assessed features of the LAB strains allow us to consider them as promising candidates for single or multiple starter cultures for food fermentation processes.
Collapse
|