1
|
Zulfiqar A, Shabbir MA, Tahir F, Khan MR, Ahmed W, Yıkmış S, Manzoor MF, Abdi G, Aadil RM. Development of oleogel by structuring the blend of corn oil and sunflower oil with beeswax to replace margarine in cookies. Food Chem X 2024; 23:101676. [PMID: 39148530 PMCID: PMC11325670 DOI: 10.1016/j.fochx.2024.101676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Oleogel significantly affects the product's sensory properties, texture, and shelf life. The goal of this study was to create oleogel by combining corn oil and sunflower oil and utilizing beeswax as a structural agent. A variety of physicochemical analyses were done to evaluate the quality of oleogel, including peroxide value, iodine value, saponification value, fatty acid, rheological parameters and firmness. Different percentages of oleogel, ranging from 0% to 75%, were used to substitute margarine in cookies. The cookies' quality was evaluated using proximate analysis, color analysis, texture analysis, calorific value, and sensory analysis. The study yielded substantial results by finding the ideal margarine-to-oleogel mix ratio, allowing for the manufacturing of high-quality cookies with a greater degree of unsaturation. Cookies with oleogel showed higher levels of unsaturation and better properties, making them the preferred option among consumers.
Collapse
Affiliation(s)
- Aqsa Zulfiqar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fizza Tahir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namık Kemal University, 59830 Tekirdag, Turkiye
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Valdivia-Culqui JE, Maicelo-Quintana JL, Cayo-Colca IS, Medina-Mendoza M, Castro-Alayo EM, Balcázar-Zumaeta CR. Oleogel Systems for Chocolate Production: A Systematic Review. Gels 2024; 10:561. [PMID: 39330164 PMCID: PMC11431030 DOI: 10.3390/gels10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In response to the growing demand for healthier food options, this review explores advances in oleogel systems as an innovative solution to reduce saturated fats in chocolates. Although appreciated for its flavor and texture, chocolate is high in calories, mainly due to cocoa butter (CB), which is rich in saturated fats. Oleogels, three-dimensional structures formed by structuring agents in edible oils, stand out in terms of mimicking saturated fats' physical and sensory properties without compromising the quality of chocolate. This study reviews how oleogels could improve chocolate's stability and sensory quality, exploring the potential of pectin-rich agro-industrial by-products as sustainable alternatives. It also explores the need for physicochemical evaluations of both oleogel and oleogel-based chocolate.
Collapse
Affiliation(s)
- Jheniffer E Valdivia-Culqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Jorge L Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Jr. Tacna 748, Piura 20002, Peru
| |
Collapse
|
3
|
Yang Z, Cui J, Yun Y, Xu Y, Tan CP, Zhang W. Effect of different gelators on the physicochemical properties and microstructure of coconut oleogels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5139-5148. [PMID: 38284624 DOI: 10.1002/jsfa.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), β-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO). RESULTS Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by β and β'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO. CONCLUSION Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihan Yang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jingtao Cui
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yonghuan Yun
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yongjiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
4
|
Genuario Barroso N, Kiyomi Okuro P, Ângelo Parente Ribeiro Cerqueira M, Lopes Cunha R. Unveiling the formation capacity of multicomponent oleogels: Performance of lecithin interacting with monostearate derivatives. Food Res Int 2024; 187:114430. [PMID: 38763679 DOI: 10.1016/j.foodres.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the self-assembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels.
Collapse
Affiliation(s)
- Noádia Genuario Barroso
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Paula Kiyomi Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | | | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Ursachi CȘ, Perța-Crișan S, Tolan I, Chambre DR, Chereji BD, Condrat D, Munteanu FD. Development and Characterization of Ethylcellulose Oleogels Based on Pumpkin Seed Oil and Rapeseed Oil. Gels 2024; 10:384. [PMID: 38920930 PMCID: PMC11203197 DOI: 10.3390/gels10060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
In contrast to rapeseed oil, pumpkin seed oil has yet to be well investigated in terms of oleogelation, and, to the best of our knowledge, no study related to the use of ethylcellulose (EC) in the structuring of this oil has been identified in the current scientific literature. Therefore, the present study evaluated several oleogels formulated with EC as the oleogelator in different concentrations of 7% (OG7) and 9% (OG9), based on cold-pressed pumpkin seed oil (PO) and refined rapeseed oil (RO), as well as on mixtures of the two oils in different combinations: PO:RO (3:1) (PRO) and PO:RO (1:1) (RPO). Physicochemical properties such as visual appearance, gel formation time (GFT), oil-binding capacity (OBC), oxidative and thermal stability, and textural characteristics were analyzed. Analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) were used in the statistical analysis of the data, with a significance level of p < 0.05. EC proved to be an effective structuring agent of the mentioned edible oils; the type of oils and the concentration of oleogelator significantly influenced the characteristics of the obtained oleogels. The 9% EC oleogels exhibited a more rigid structure, with a higher OBC and a reduced GFT. Pumpkin seed oil led to more stable oleogels, while the mixture of pumpkin seed oil with rapeseed oil caused a significant reduction in their mechanical properties and decreased the OBC. After 14 days of storage, all oleogels demonstrated proper oxidative stability within the bounds set by international regulations for edible fats, regardless of the kind of oil and EC concentration. All of the oleogels showed a higher oxidative stability than the oils utilized in their formulation; however, those prepared with cold-pressed pumpkin seed oil indicated a lower level of lipid oxidation among all oleogels. The P-OG9 and PR-OG9 oleogels, which mainly included PO and contained 9% EC, demonstrated the optimum levels of quality in texture, GFT, OBC, and oxidative stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (C.-Ș.U.); (S.P.-C.); (I.T.); (D.R.C.); (B.-D.C.); (D.C.)
| |
Collapse
|
6
|
Kudłacik-Kramarczyk S, Drabczyk A, Przybyłowicz A, Krzan M. Linseed Oil-Based Oleogel Vehicles for Hydrophobic Drug Delivery-Physicochemical and Applicative Properties. Pharmaceutics 2024; 16:600. [PMID: 38794262 PMCID: PMC11125216 DOI: 10.3390/pharmaceutics16050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, a methodology for synthesizing oleogels based on linseed oil and emulsifiers, such as beeswax and Tween 20 and Tween 80, was developed. Linseed oil served as the main oil phase, while beeswax acted as a gelling and emulsifying agent. Tween compounds are non-ionic surfactants composed of hydrophobic and hydrophilic parts, allowing for the formation of a stable system with promising properties. Surface wetting analysis of the obtained oleogels, FT-IR spectroscopy, and determination of relative and absolute humidity over time, as well as optical microscope analysis and rheological analysis of the obtained oleogels, were conducted as part of the research. The results indicate that increasing the amount of Tween 20 decreases the hydrophilicity of the oleogel, while Tween 80 exhibits the opposite effect. Surface energy analysis suggests that a higher content of Tween 20 may lead to a reduction in the surface energy of the oleogels, which may indicate greater material stability. Changes in relative humidity and FT-IR spectral analysis confirm the influence of emulsifiers on the presence of characteristic functional groups in the structure of the oleogels. Additionally, microscopic analysis suggests that an emulsifier with a longer hydrophobic tail leads to a denser material structure.
Collapse
Affiliation(s)
- Sonia Kudłacik-Kramarczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland; (A.P.); (M.K.)
| | - Anna Drabczyk
- CBRTP SA—Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A St., 00-645 Warsaw, Poland
| | - Alicja Przybyłowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland; (A.P.); (M.K.)
- Faculty of Mechanical Engineering, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland; (A.P.); (M.K.)
| |
Collapse
|
7
|
Wang Z, Chandrapala J, Truong T, Farahnaky A. Multicomponent Oleogels Prepared with High- and Low-Molecular-Weight Oleogelators: Ethylcellulose and Waxes. Foods 2023; 12:3093. [PMID: 37628092 PMCID: PMC10453496 DOI: 10.3390/foods12163093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The combined interactions between ethylcellulose (EC) and natural waxes to structure edible oil are underexplored. To reduce the high EC concentration required to form a functional oleogel, novel oleogels were prepared using a 50% critical concentration of EC (i.e., 4%) with 1-4% beeswax (BW) and carnauba wax (CRW). One percent wax was sufficient for EC to form self-sustaining oleogel. Rheological analysis demonstrated that 4%EC + 4%BW/CRW had comparable oleogel properties to 8%EC. The yield stress and flow point of wax oleogels were enhanced upon EC addition. EC did not influence the thermal behaviour of the wax component of the oleogel, but the crystallinity and plasticity of the combined oleogel increased. The crystal shape of BW oleogel changed upon EC addition from a needle-like to spherulitic shape. Confocal laser scanning microscopy highlighted the uniform distribution of EC polymeric network and wax crystals. EC/wax mixtures have promising oil-structuring abilities that have the potential to use as solid fat substitutes.
Collapse
Affiliation(s)
| | | | | | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC 3082, Australia; (Z.W.); (J.C.); (T.T.)
| |
Collapse
|
8
|
Babu A, Sivakumar G, Das A, Bharti D, Qureshi D, Habibullah SK, Satheesan A, Mohanty B, Pal K, Maji S. Preparation and Characterization of Novel Oleogels Using Jasmine Floral Wax and Wheat Germ Oil for Oral Delivery of Curcumin. ACS OMEGA 2022; 7:30125-30136. [PMID: 36061661 PMCID: PMC9434628 DOI: 10.1021/acsomega.2c03201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/04/2022] [Indexed: 05/31/2023]
Abstract
Oleogels (OGs) have gained a lot of interest as a delivery system for a variety of pharmaceuticals. The current study explains the development of jasmine floral wax (JFW) and wheat germ oil (WGO)-based OGs for oral drug (curcumin) delivery application. The OGs were made by dissolving JFW in WGO at 70 °C and cooling it to room temperature (25 °C). The critical gelation concentration of JFW that induces the gelation of WGO was found to be 10% (w/w). The OGs were characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), microscopic analysis, and mechanical test. XRD data indicated that JFW influences the crystallinity of the OGs. Among the prepared OGs, OG 17.5 showed higher crystallization in the series. Optical microscopic studies demonstrated the formation of fiber structures due to the entanglement of crystals whereas, polarized light micrographs suggested the formation of spherulites or clustered crystallite structures. The mechanical properties of the OGs increased linearly with the increase in the JFW concentration. Curcumin-loaded OGs were examined for their controlled release applications. In summary, the developed OGs were found to have the necessary features for modulating the oral delivery of curcumin.
Collapse
Affiliation(s)
- Anashwara Babu
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Gomathi Sivakumar
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Anubhab Das
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Deepti Bharti
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Dilshad Qureshi
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - SK Habibullah
- Institute
of Pharmacy and Technology, Salipur, Odisha 754202, India
| | - Anjana Satheesan
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | | | - Kunal Pal
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Samarendra Maji
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| |
Collapse
|