1
|
Al-Mashhadani MHI, Szijjártó GP, Sebestyén Z, Károly Z, Mihály J, Tompos A. Novel, Fluorine-Free Membranes Based on Sulfonated Polyvinyl Alcohol and Poly(ether-block-amide) with Sulfonated Montmorillonite Nanofiller for PEMFC Applications. MEMBRANES 2024; 14:211. [PMID: 39452823 PMCID: PMC11509672 DOI: 10.3390/membranes14100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Novel blend membranes containing S-PVA and PEBAX 1657 with a blend ratio of 8:2 (referred to as SPP) were prepared using a solution-casting technique. In the manufacturing process, sulfonated montmorillonite (S-MMT) in ratios of 0%, 3%, 5%, and 7% was used as a filler. The crystallinity of composite membranes has been investigated by X-ray diffraction (XRD), while the interaction between the components was evaluated using Fourier-transform infrared spectroscopy (FT-IR). With increasing filler content, good compatibility between the components due to hydrogen bonds was established, which ultimately resulted in improved tensile strength and chemical stability. In addition, due to the sulfonated moieties of S-MMT, the highest ion exchange capacity (0.46 meq/g) and water uptake (51.61%) can be achieved at the highest filler content with an acceptable swelling degree of 22.65%. The composite membrane with 7% S-MMT appears to be suitable for application in proton exchange membrane fuel cells (PEMFCs). Amongst the membranes studied, this membrane achieved the highest current density and power density in fuel cell tests, which were 149.5 mA/cm2 and 49.51 mW/cm2. Our fluorine-free composite membranes can become a promising new membrane family in PEMFC applications, offering an alternative to Nafion membranes.
Collapse
Affiliation(s)
- Manhal H. Ibrahim Al-Mashhadani
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
- Hevesy György Doctoral School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad 10070, Iraq
| | - Gábor Pál Szijjártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| | - Zoltán Sebestyén
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| | - Zoltán Károly
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| | - András Tompos
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| |
Collapse
|
2
|
Al-Mashhadani MHI, Salmanzade K, Tompos A, Selim A. Promising Fluorine-Free Ion Exchange Membranes Based on a Poly(ether-block-amide) Copolymer and Sulfonated Montmorillonite: Influence of Different Copolymer Segment Ratios. MEMBRANES 2024; 14:17. [PMID: 38248707 PMCID: PMC10820341 DOI: 10.3390/membranes14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Novel composite membranes employing a poly(ether-block-amide) (PEBAX) copolymer and sulfonated montmorillonite (S-MMT) as a filler were developed. The ratio of polyether to polyamide blocks was investigated using PEBAX 2533 and PEBAX 4533 based on the membrane properties and performance. Additionally, the effect of the changing filler ratio was monitored. The interaction between the S-MMT as nanofiller and the polymer matrix of PEBAX2533 and PEBAX4533 as well as the crystalline nature and thermal and mechanical stability of the composite membranes were evaluated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and tensile test. The composite membrane with 7 wt.% S-MMT showed the highest water uptake of 21% and 16% and an acceptable swelling degree of 16% and 9% for PEBAX 2533 and PEBAX 4533 composite membranes, respectively. In terms of water uptake and ion exchange capacity at room temperature, the new un-protonated membranes are superior to un-protonated Nafion. Meanwhile, with the same S-MMT content, the ion conductivity of PEBAX 2533 and PEBAX 4533 composite membranes is 2 and 1.6 mS/cm, and their ion exchange capacity is 0.9 and 1.10 meq/g.
Collapse
Affiliation(s)
- Manhal H. Ibrahim Al-Mashhadani
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
- Hevesy György Doctoral School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Institute of Laser for Postgraduate Studies, University of Baghdad, 10070 Baghdad, Iraq
| | - Khirdakhanim Salmanzade
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
| | - András Tompos
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
| | - Asmaa Selim
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
- Chemical Engineering and Pilot Plat Department, Engineering and Renewable Energy Research Institute, National Research Centre, 33 El Bohouth Street, Giza 12622, Egypt
| |
Collapse
|
3
|
Modau L, Sigwadi R, Mokrani T, Nemavhola F. Chitosan Membranes for Direct Methanol Fuel Cell Applications. MEMBRANES 2023; 13:838. [PMID: 37888010 PMCID: PMC10608347 DOI: 10.3390/membranes13100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The purpose of this study is to identify the steps involved in fabricating silica/chitosan composite membranes and their suitability for fuel cell applications. It also intends to identify the physical characteristics of chitosan composite membranes, including their degree of water absorption, proton conductivity, methanol permeability, and functional groups. In this investigation, composite membranes were fabricated using the solution casting method with a chitosan content of 5 g and silica dosage variations of 2% and 4% while stirring at a constant speed for 2 h. According to the findings, the analysis of composite membranes produced chitosan membranes that were successfully modified with silica. The optimum membrane was found to be 4% s-SiO2 from the Sol-gel method with the composite membrane's optimal condition of 0.234 cm/s proton conductivity, water uptake of 56.21%, and reduced methanol permeability of 0.99 × 10-7 cm2/s in the first 30 min and 3.31 × 10-7 in the last 150 min. Maintaining lower water uptake capacity at higher silica content is still a challenge that needs to be addressed. In conclusion, the fabricated membranes showed exceptional results in terms of proton conductivity and methanol permeability.
Collapse
Affiliation(s)
- Livhuwani Modau
- Department of Chemical Engineering, University of South Africa, Florida 1710, South Africa; (L.M.); (R.S.); (T.M.)
| | - Rudzani Sigwadi
- Department of Chemical Engineering, University of South Africa, Florida 1710, South Africa; (L.M.); (R.S.); (T.M.)
| | - Touhami Mokrani
- Department of Chemical Engineering, University of South Africa, Florida 1710, South Africa; (L.M.); (R.S.); (T.M.)
| | - Fulufhelo Nemavhola
- Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
4
|
Safronova EY, Lysova AA, Voropaeva DY, Yaroslavtsev AB. Approaches to the Modification of Perfluorosulfonic Acid Membranes. MEMBRANES 2023; 13:721. [PMID: 37623782 PMCID: PMC10456953 DOI: 10.3390/membranes13080721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Polymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties. Today, one of the most well-known practical applications of PFSA membranes is the development of fuel cells. Some disadvantages of PFSA membranes, such as low conductivity at low humidity and high temperature limit their application. The approaches to optimization of properties are modification of commercial PFSA membranes and polymers by incorporation of different additive or pretreatment. This review summarizes the approaches to their modification, which will allow the creation of materials with a different set of functional properties, differing in ion transport (first of all proton conductivity) and selectivity, based on commercially available samples. These approaches include the use of different treatment techniques as well as the creation of hybrid materials containing dopant nanoparticles. Modification of the intrapore space of the membrane was shown to be a way of targeting the key functional properties of the membranes.
Collapse
Affiliation(s)
- Ekaterina Yu. Safronova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia; (A.A.L.); (D.Y.V.); (A.B.Y.)
| | | | | | | |
Collapse
|
5
|
Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers (Basel) 2023; 15:polym15030659. [PMID: 36771960 PMCID: PMC9920170 DOI: 10.3390/polym15030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
A direct methanol fuel cell (DMFC) is an excellent energy device in which direct conversion of methanol to energy occurs, resulting in a high energy conversion rate. For DMFCs, fluoropolymer copolymers are considered excellent proton-exchange membranes (PEMs). However, the high cost and high methanol permeability of commercial membranes are major obstacles to overcome in achieving higher performance in DMFCs. Novel developments have focused on various reliable materials to decrease costs and enhance DMFC performance. From this perspective, cellulose-based materials have been effectively considered as polymers and additives with multiple concepts to develop PEMs for DMFCs. In this review, we have extensively discussed the advances and utilization of cost-effective cellulose materials (microcrystalline cellulose, nanocrystalline cellulose, cellulose whiskers, cellulose nanofibers, and cellulose acetate) as PEMs for DMFCs. By adding cellulose or cellulose derivatives alone or into the PEM matrix, the performance of DMFCs is attained progressively. To understand the impact of different structures and compositions of cellulose-containing PEMs, they have been classified as functionalized cellulose, grafted cellulose, acid-doped cellulose, cellulose blended with different polymers, and composites with inorganic additives.
Collapse
|
6
|
Hsieh TL, Guo WH, Chang MY, Huang WY, Wen HY. Electric Field-Assisted Filling of Sulfonated Polymers in ePTFE Backing Material for Fuel Cell. MEMBRANES 2022; 12:membranes12100974. [PMID: 36295733 PMCID: PMC9611903 DOI: 10.3390/membranes12100974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
This study fabricated a composite ePTFE-backed proton-exchange membrane by filling the pores on the ePTFE backing with sulfonated polyarylene ethers through an externally supplied electric field. The morphology changes were observed under an SEM. The results suggested that the application of an electric field had led to the effective filling of pores by polymers. In addition, the composite membrane featured good dimensional stability and swelling ratio, and its water uptake, proton conductivity and component efficiency increased with voltage. It is found in this study that the external application of an electric field resulted in the effective filling of pores in the ePTFE by sulfonated polyarylene ether polymers and, thus, an improved composite membrane performance.
Collapse
Affiliation(s)
- Tung-Li Hsieh
- Department of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Wen-Hui Guo
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Mei-Ying Chang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wen-Yao Huang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hsin-Yi Wen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|