1
|
Musciacchio L, Mardirossian M, Marussi G, Crosera M, Turco G, Porrelli D. Core-shell electrospun polycaprolactone nanofibers, loaded with rifampicin and coated with silver nanoparticles, for tissue engineering applications. BIOMATERIALS ADVANCES 2025; 166:214036. [PMID: 39276661 DOI: 10.1016/j.bioadv.2024.214036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the field of tissue engineering, the use of core-shell fibers represents an advantageous approach to protect and finely tune the release of bioactive compounds with the aim to regulate their efficacy. In this work, core-shell electrospun polycaprolactone nanofiber-based membranes, loaded with rifampicin and coated with silver nanoparticles, were developed and characterized. The membranes are composed by randomly oriented nanofibers with a homogeneous diameter, as demonstrated by scanning electron microscopy (SEM). An air-plasma treatment was applied to increase the hydrophilicity of the membranes as confirmed by contact angle measurements. The rifampicin release from untreated and air-plasma treated membranes, evaluated by UV spectrophotometry, displayed a similar and constant over-time release profile, demonstrating that the air-plasma treatment does not degrade the rifampicin, loaded in the core region of the nanofibers. The presence and the distribution of silver nanoparticles on the nanofiber surface were investigated by SEM and Energy Dispersive Spectroscopy. Moreover, SEM imaging demonstrated that the produced membranes possess a good stability over time, in terms of structure maintenance. The developed membranes showed a good biocompatibility towards murine fibroblasts, human osteosarcoma cells and urotheliocytes, reveling the absence of cytotoxic effects. Moreover, doble-functionalized membranes inhibit the growth of E. coli and S. aureus. Thanks to the possibilities offered by the coaxial electrospinning, the membranes here proposed are promising for several tissue engineering applications.
Collapse
Affiliation(s)
- Luigi Musciacchio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
2
|
Rahiman N, Kesharwani P, Karav S, Sahebkar A. Curcumin-based nanofibers: A promising approach for cancer therapy. Pathol Res Pract 2024; 266:155791. [PMID: 39742832 DOI: 10.1016/j.prp.2024.155791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Nanofibers are among the promising platforms for efficient delivery of drugs (both hydrophilic and hydrophobic) through harnessing polymers with different natures as their base. Hydrophobic low-solubility agents such as curcumin could be incorporated in various types of electrospun nanofibers for different aims in drug delivery, such as enhancing its solubility, making this agent sustained release with improved pharmacological efficacy. Through using this nanoplatform, curcumin may become more bioavailable and more efficcious in the field of cancer therapy as well as tissue engineering and wound healing for local delivery of this anti-inflammatory and antioxidant agent. In this review, the characteristics of curcumin-loaded nanofibers, their targeting potential or stimuli-responsiveness accompanied with therapeutic anti-cancerous applications of them (mostly in local application) are securitized. These nanofibers follow the aim of enhancing curcumin's therapeutic effectiveness and release profile. We laso elaborate on the mechanisms of action through which curcumin exerts its effect on various cancerous cells after its incorporation in various types of nanofibers which have been prepared by exploiting different polymers.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Miele D, Catenacci L, Sorrenti M, Perteghella S, Filiberti S, Mandracchia D, Ronca R, Bonferoni MC. Collagen/PCL electrospun fibers loaded with polyphenols: Curcumin and resveratrol comparison. Int J Biol Macromol 2024; 279:135333. [PMID: 39241997 DOI: 10.1016/j.ijbiomac.2024.135333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Curcumin (Cur) and resveratrol (Rsv) have already been proposed for both anti-tumor and wound healing applications and contrasting results have been published regarding their anti- or pro-angiogenic activity; depending on the final application, an anti- or a pro-angiogenic activity is required. In the present study, a comparison of Cur and Rsv loaded electrospun fibers based on collagen and polycaprolactone (PCL) mixture was performed in order to make a contribution to understanding whether the two polyphenols have anti or pro-angiogenic activity. Despite their hydrophobic character, the two polyphenols affected morphology and wettability of the fibers, and Rsv-loaded fibers resulted larger and more quickly wettable. After hydration, collagen/PCL fibers loaded with both Cur and Rsv exhibited higher elongation and better deformation with respect to the unloaded fibers. Fourier transformed infrared spectroscopy and thermal analysis showed interactions between the polyphenols and collagen. Both fiber formulations resulted biocompatible with an increase of fibroblast number during 7 days of culture; confocal microscopy analyses demonstrated that Cur released by the fibers was internalized by the cells which remained vital and adherent. Chick embryo chorioallantoic membrane assay showed that both fibers had anti-angiogenic behavior, suggesting that an anti-cancer application more than a wound healing one could be envisaged.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Serena Filiberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
4
|
Kandaswamy K, Prasad Panda S, Subramanian R, Khan H, Rafi Shaik M, Althaf Hussain S, Guru A, Arockiaraj J. Synergistic berberine chloride and Curcumin-Loaded nanofiber therapies against Methicillin-Resistant Staphylococcus aureus Infection: Augmented immune and inflammatory responses in zebrafish wound healing. Int Immunopharmacol 2024; 140:112856. [PMID: 39121609 DOI: 10.1016/j.intimp.2024.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Wound healing pivots on a finely orchestrated inflammatory cascade, critical for tissue repair. Chronic wounds, compounded by persistent inflammation and susceptibility to infection, pose formidable clinical challenges. Nanofiber dressings offer promising avenues for wound care, yet their interaction with inflammation and infection remains elusive. We aim to delineate the inflammatory cascade preceding wound closure and assess Cu@Bbc nanofibers' therapeutic efficacy in mitigating inflammation and combating infection. Their unique attributes suggest promise in modulating inflammation, fostering tissue regeneration, and preventing microbial colonization. Investigating the intricate interplay between nanofiber scaffolds, inflammation, and infection may unveil mechanisms of enhanced wound healing. Our findings could stimulate the development of tailored dressings, urgently needed for effective wound management amidst immune dysregulation, infection, and inflammation. METHODS In this investigation, we synthesized Cu@Bbc nanofibers, incorporating curcumin and berberine chloride, for wound healing applications. We evaluated their individual and combined antibacterial, anti-biofilm, and antioxidant activities, alongside binding affinity with pro-inflammatory cytokines through molecular docking. Morphological characterization was conducted via SEM, FTIR assessed functional groups, and wettability contact angle measured hydrophobic properties. The physical properties, including tensile strength, swelling behavior, and thermal stability, were evaluated using tensile testing, saline immersion method and thermogravimetric analysis. Biodegradability of the nanofibers was assessed through a soil burial test. Biocompatibility was determined via MTT assay, while wound healing efficacy was assessed with in vitro scratch assays. Controlled drug release and antibacterial activity against MRSA were examined, with in vivo assessment in a zebrafish model elucidating inflammatory responses and tissue remodeling. RESULTS In this study, the synergistic action of curcumin and berberine chloride exhibited potent antibacterial efficacy against MRSA, with significant anti-mature biofilm disruption. Additionally, the combination demonstrated heightened antioxidant potential. Molecular docking studies revealed strong binding affinity with pro-inflammatory cytokines, suggesting a role in expediting the inflammatory response crucial for wound healing. Morphological analysis confirmed nanofiber quality, with drug presence verified via FTIR spectroscopy. Cu@Bbc demonstrated higher tensile strength, optimal swelling behavior, and robust thermal stability as evaluated through tensile testing and thermogravimetric analysis. Additionally, the Cu@Bbc nanofiber showed enhanced biodegradability, as confirmed by the soil burial test. Biocompatibility assessments showed favorable compatibility, while in vitro studies demonstrated potent antibacterial activity. In vivo zebrafish experiments revealed accelerated wound closure, re-epithelialization, and heightened immune response, indicative of enhanced wound healing. CONCLUSION In summary, our investigation highlights the efficacy of Cu@Bbc nanofibers, laden with curcumin and berberine chloride, in displaying robust antibacterial and antioxidant attributes while also modulating immune responses and inflammatory cascades essential for wound healing. These results signify their potential as multifaceted wound dressings for clinical implementation.
Collapse
Affiliation(s)
- Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttarpradesh, India
| | - Raghunandhakumar Subramanian
- Cancer and Stem Cell Research Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077 Tamil Nadu, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Dong R, Gong W, Guo Q, Liu H, Yu DG. Synergistic Effects of Radical Distributions of Soluble and Insoluble Polymers within Electrospun Nanofibers for an Extending Release of Ferulic Acid. Polymers (Basel) 2024; 16:2614. [PMID: 39339078 PMCID: PMC11435815 DOI: 10.3390/polym16182614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Polymeric composites for manipulating the sustained release of an encapsulated active ingredient are highly sought after for many practical applications; particularly, water-insoluble polymers and core-shell structures are frequently explored to manipulate the release behaviors of drug molecules over an extended time period. In this study, electrospun core-shell nanostructures were utilized to develop a brand-new strategy to tailor the spatial distributions of both an insoluble polymer (ethylcellulose, EC) and soluble polymer (polyvinylpyrrolidone, PVP) within the nanofibers, thereby manipulating the extended-release behaviors of the loaded active ingredient, ferulic acid (FA). Scanning electron microscopy and transmission electron microscopy assessments revealed that all the prepared nanofibers had a linear morphology without beads or spindles, and those from the coaxial processes had an obvious core-shell structure. X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopic tests confirmed that FA had fine compatibility with EC and PVP, and presented in all the nanofibers in an amorphous state. In vitro dissolution tests indicated that the radical distributions of EC (decreasing from shell to core) and PVP (increasing from shell to core) were able to play their important role in manipulating the release behaviors of FA elaborately. On one hand, the core-shell nanofibers F3 had the advantages of homogeneous composite nanofibers F1 with a higher content of EC prepared from the shell solutions to inhibit the initial burst release and provide a longer time period of sustained release. On the other hand, F3 had the advantages of nanofibers F2 with a higher content of PVP prepared from the core solutions to inhibit the negative tailing-off release. The key element was the water permeation rates, controlled by the ratios of soluble and insoluble polymers. The new strategy based on core-shell structure paves a way for developing a wide variety of polymeric composites with heterogeneous distributions for realizing the desired functional performances.
Collapse
Affiliation(s)
- Ran Dong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiuyun Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
6
|
Huynh DP, Tran TA, Nguyen TTH, Nguyen VVL. Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1999-2019. [PMID: 38972044 DOI: 10.1080/09205063.2024.2365043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024]
Abstract
This research investigated the in vivo gelation, biodegradation, and drug release efficiency of a novel injectable sensitive drug delivery system for human growth hormone (HGh). This composite system comprises pH- and temperature-sensitive hydrogel, designated as oligomer serine-b-poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide)-b-oligomer serine (OS-PLA-PEG-PLA-OS) pentablock copolymer, as matrix and electrosprayed HGh-loaded chitosan (HGh@CS) nanoparticles (NPs) as principal material. The proton nuclear magnetic resonance spectrum of the pH- and temperature-sensitive OS-PLA-PEG-PLA-OS pentablock copolymer hydrogel proved that this copolymer was successfully synthesized. The HGh was encapsulated in chitosan (CS) NPs by an electrospraying system in acetic acid with appropriate granulation parameters. The scanning electron microscopy images and size distribution showed that the HGh@CS NPs formed had an average diameter of 366.1 ± 214.5 nm with a discrete spherical shape and dispersed morphology. The sol-gel transition of complex gel based on HGh@CS NPs and OS-PLA-PEG-PLA-OS pentablock hydrogel was investigated at 15 °C and pH 7.8 in the sol state and gelled at 37 °C and pH 7.4, which is suitable for the physiological conditions of the human body. The HGh release experiment of the composite system was performed in an in vivo environment, which demonstrated the ability to release HGh, and underwent biodegradation within 32 days. The findings of the investigation revealed that the distribution of HGh@CS NPs into the hydrogel matrix not only improved the mechanical properties of the gel matrix but also controlled the drug release kinetics into the systematic bloodstream, which ultimately promotes the desired therapeutic body growth depending on the distinct concentration used.
Collapse
Affiliation(s)
- Dai Phu Huynh
- Faculty of Materials Technology, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Research Center for Polymeric Materials, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thien Anh Tran
- Research Center for Polymeric Materials, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi Thanh Hang Nguyen
- Research Center for Polymeric Materials, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Viet Linh Nguyen
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Xu M, Sun Y, Cong B, Zhang X, Li Z, Liu Y, Geng L, Qin Q, Wu Y, Gao M, Wang W, Wang Y, Xu Y. The mechanism of low molecular weight fucoidan-incorporated nanofiber scaffolds inhibiting oral leukoplakia via SR-A/Wnt signal axis. Front Pharmacol 2024; 15:1397761. [PMID: 39104391 PMCID: PMC11298705 DOI: 10.3389/fphar.2024.1397761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Oral leukoplakia (OLK) is the most common oral precancerous lesion, and 3%-17% of OLK patients progress to oral squamous cell carcinoma. OLK is susceptible to recurrence and has no effective treatment. However, conventional drugs have significant side effects and limitations. Therefore, it is important to identify drugs that target OLK. In this study, scavenger receptor A (SR-A) was found to be abnormally highly expressed in the oral mucosal epithelial cells of OLK patients, whereas molecular biology studies revealed that low molecular weight fucoidan (LMWF) promoted apoptosis of dysplastic oral keratinocytes (DOK) and inhibited the growth and migration of DOK, and the inhibitory effect of LMWF on OLK was achieved by regulating the SR-A/Wnt signaling axis and related genes. Based on the above results and the special situation of the oral environment, we constructed LMWF/poly(caprolactone-co-lactide) nanofiber membranes with different structures for the in-situ treatment of OLK using electrospinning technology. The results showed that the nanofiber membranes with a shell-core structure had the best physicochemical properties, biocompatibility, and therapeutic effect, which optimized the LMWF drug delivery and ensured the effective concentration of the drug at the target point, thus achieving precise treatment of local lesions in the oral cavity. This has potential application value in inhibiting the development of OLK.
Collapse
Affiliation(s)
- Ming Xu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Sun
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaopei Zhang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Weifang Medical University, Weifang, China
| | - Yingnan Liu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qi Qin
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yingtao Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wanchun Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Barcena AJR, Perez JVD, Bernardino MR, San Valentin EMD, Damasco JA, Klusman C, Martin B, Court KA, Godin B, Canlas G, Fowlkes N, Bouchard RR, Cheng J, Huang SY, Melancon MP. Controlled Delivery of Rosuvastatin or Rapamycin through Electrospun Bismuth Nanoparticle-Infused Perivascular Wraps Promotes Arteriovenous Fistula Maturation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33159-33168. [PMID: 38912610 DOI: 10.1021/acsami.4c06042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
In the context of arteriovenous fistula (AVF) failure, local delivery enables the release of higher concentrations of drugs that can suppress neointimal hyperplasia (NIH) while reducing systemic adverse effects. However, the radiolucency of polymeric delivery systems hinders long-term in vivo surveillance of safety and efficacy. We hypothesize that using a radiopaque perivascular wrap to deliver anti-NIH drugs could enhance AVF maturation. Through electrospinning, we fabricated multifunctional perivascular polycaprolactone (PCL) wraps loaded with bismuth nanoparticles (BiNPs) for enhanced radiologic visibility and drugs that can attenuate NIH─rosuvastatin (Rosu) and rapamycin (Rapa). The following groups were tested on the AVFs of a total of 24 Sprague-Dawley rats with induced chronic kidney disease: control (i.e., without wrap), PCL-Bi (i.e., wrap with BiNPs), PCL-Bi-Rosu, and PCL-Bi-Rapa. We found that BiNPs significantly improved the wraps' radiopacity without affecting biocompatibility. The drug release profiles of Rosu (hydrophilic drug) and Rapa (hydrophobic drug) differed significantly. Rosu demonstrated a burst release followed by gradual tapering over 8 weeks, while Rapa demonstrated a gradual release similar to that of the hydrophobic BiNPs. In vivo investigations revealed that both drug-loaded wraps can reduce vascular stenosis on ultrasonography and histomorphometry, as well as reduce [18F]Fluorodeoxyglucose uptake on positron emission tomography. Immunohistochemical studies revealed that PCL-Bi-Rosu primarily attenuated endothelial dysfunction and hypoxia in the neointimal layer, while PCL-Bi-Rapa modulated hypoxia, inflammation, and cellular proliferation across the whole outflow vein. In summary, the controlled delivery of drugs with different properties and mechanisms of action against NIH through a multifunctional, radiopaque perivascular wrap can improve imaging and histologic parameters of AVF maturation.
Collapse
Affiliation(s)
- Allan John R Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Joy Vanessa D Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Marvin R Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jossana A Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Carleigh Klusman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Baylor College of Medicine, Houston, Texas 77030, United States
| | - Benjamin Martin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Baylor College of Medicine, Houston, Texas 77030, United States
| | - Karem A Court
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Gino Canlas
- Department of Chemistry, Lamar University, Beaumont, Texas 77705, United States
| | - Natalie Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Richard R Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Steven Y Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas 77030, United States
| |
Collapse
|
9
|
Kek HY, Tan H, Othman MHD, Lee CT, Ahmad FBJ, Ismail ND, Nyakuma BB, Lee KQ, Wong KY. Transforming pollution into solutions: A bibliometric analysis and sustainable strategies for reducing indoor microplastics while converting to value-added products. ENVIRONMENTAL RESEARCH 2024; 252:118928. [PMID: 38636646 DOI: 10.1016/j.envres.2024.118928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Microplastics (MPs), as emerging indoor contaminants, have garnered attention due to their ubiquity and unresolved implications for human health. These tiny particles have permeated indoor air and water, leading to inevitable human exposure. Preliminary evidence suggests MP exposure could be linked to respiratory, gastrointestinal, and potentially other health issues, yet the full scope of their effects remains unclear. To map the overall landscape of this research field, a bibliometric analysis based on research articles retrieved from the Web of Science database was conducted. The study synthesizes the current state of knowledge and spotlights the innovative mitigation strategies proposed to curb indoor MP pollution. These strategies involve minimizing the MP emission from source, advancements in filtration technology, aimed at reducing the MP exposure. Furthermore, this research sheds light on cutting-edge methods for converting MP waste into value-added products. These innovative approaches not only promise to alleviate environmental burdens but also contribute to a more sustainable and circular economy by transforming waste into resources such as biofuels, construction materials, and batteries. Despite these strides, this study acknowledges the ongoing challenges, including the need for more efficient removal technologies and a deeper understanding of MPs' health impacts. Looking forward, the study underscores the necessity for further research to fill these knowledge gaps, particularly in the areas of long-term health outcomes and the development of standardized, reliable methodologies for MP detection and quantification in indoor settings. This comprehensive approach paves the way for future exploration and the development of robust solutions to the complex issue of microplastic pollution.
Collapse
Affiliation(s)
- Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Huiyi Tan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chew Tin Lee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | | | - Nur Dayana Ismail
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B. 086, Gombe, Gombe State, Nigeria
| | - Kee Quen Lee
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Malaysia
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| |
Collapse
|
10
|
Avila Y, Rebolledo LP, Skelly E, de Freitas Saito R, Wei H, Lilley D, Stanley RE, Hou YM, Yang H, Sztuba-Solinska J, Chen SJ, Dokholyan NV, Tan C, Li SK, He X, Zhang X, Miles W, Franco E, Binzel DW, Guo P, Afonin KA. Cracking the Code: Enhancing Molecular Tools for Progress in Nanobiotechnology. ACS APPLIED BIO MATERIALS 2024; 7:3587-3604. [PMID: 38833534 PMCID: PMC11190997 DOI: 10.1021/acsabm.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.
Collapse
Affiliation(s)
- Yelixza
I. Avila
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Laura P. Rebolledo
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Renata de Freitas Saito
- Comprehensive
Center for Precision Oncology, Centro de Investigação
Translacional em Oncologia (LIM24), Departamento
de Radiologia e Oncologia, Faculdade de Medicina da Universidade de
São Paulo and Instituto do Câncer do Estado de São
Paulo, São Paulo, São Paulo 01246-903, Brazil
| | - Hui Wei
- College
of Engineering and Applied Sciences, Nanjing
University, Nanjing, Jiangsu 210023, P. R. China
| | - David Lilley
- School
of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Robin E. Stanley
- Signal
Transduction Laboratory, National Institute of Environmental Health
Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Ya-Ming Hou
- Thomas
Jefferson
University, Department of Biochemistry
and Molecular Biology, 233 South 10th Street, BLSB 220 Philadelphia, Pennsylvania 19107, United States
| | - Haoyun Yang
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Joanna Sztuba-Solinska
- Vaccine
Research and Development, Early Bioprocess Development, Pfizer Inc., 401 N Middletown Road, Pearl
River, New York 10965, United States
| | - Shi-Jie Chen
- Department
of Physics and Astronomy, Department of Biochemistry, Institute of
Data Sciences and Informatics, University
of Missouri at Columbia, Columbia, Missouri 65211, United States
| | - Nikolay V. Dokholyan
- Departments
of Pharmacology and Biochemistry & Molecular Biology Penn State College of Medicine; Hershey, Pennsylvania 17033, United States
- Departments
of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cheemeng Tan
- University of California, Davis, California 95616, United States
| | - S. Kevin Li
- Division
of Pharmaceutical Sciences, James L Winkle
College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiaoming He
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Xiaoting Zhang
- Department
of Cancer Biology, Breast Cancer Research Program, and University
of Cincinnati Cancer Center, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Wayne Miles
- Department
of Cancer Biology and Genetics, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Elisa Franco
- Department
of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Daniel W. Binzel
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
11
|
Karabulut H, Xu D, Ma Y, Tut TA, Ulag S, Pinar O, Kazan D, Guncu MM, Sahin A, Wei H, Chen J, Gunduz O. A new strategy for the treatment of middle ear infection using ciprofloxacin/amoxicillin-loaded ethyl cellulose/polyhydroxybutyrate nanofibers. Int J Biol Macromol 2024; 269:131794. [PMID: 38697434 DOI: 10.1016/j.ijbiomac.2024.131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
A middle ear infection occurs due to the presence of several microorganisms behind the eardrum (tympanic membrane) and is very challenging to treat due to its unique location and requires a well-designed treatment. If not treated properly, the infection can result in severe symptoms and unavoidable side effects. In this study, excellent biocompatible ethyl cellulose (EC) and biodegradable polyhydroxybutyrate (PHB) biopolymer were used to fabricate drug-loaded nanofiber scaffolds using an electrospinning technique to overcome antibiotic overdose and insufficient efficacy of drug release during treatment. PHB polymer was produced from Halomonas sp., and the purity of PHB was found to around be 90 %. Additionally, ciprofloxacin (CIP) and amoxicillin (AMX) are highly preferable since both drugs are highly effective against gram-negative and gram-positive bacteria to treat several infections. Obtained smooth nanofibers were between 116.24 and 171.82 nm in diameter and the addition of PHB polymer and antibiotics improved the morphology of the nanofiber scaffolds. Thermal properties of the nanofiber scaffolds were tested and the highest Tg temperature resulted at 229 °C. The mechanical properties of the scaffolds were tested, and the highest tensile strength resulted in 4.65 ± 6.33 MPa. Also, drug-loaded scaffolds were treated against the most common microorganisms that cause the infection, such as S.aureus, E.coli, and P.aeruginosa, and resulted in inhibition zones between 10 and 21 mm. MTT assay was performed by culturing human adipose-derived mesenchymal stem cells (hAD MSCs) on the scaffolds. The morphology of the hAD MSCs' attachment was tested with SEM analysis and hAD MSCs were able to attach, spread, and live on each scaffold even on the day of 7. The cumulative drug release kinetics of CIP and AMX from drug-loaded scaffolds were analysed in phosphate-buffered saline (pH: 7.4) within different time intervals of up to 14 days using a UV spectrophotometer. Furthermore, the drug release showed that the First-Order and Korsmeyer-Peppas models were the most suitable kinetic models. Animal testing was performed on SD rats, matrix and collagen deposition occurred on days 5 and 10, which were observed using Hematoxylin-eosin and Masson's trichrome staining. At the highest drug concentration, a better repair effect was observed. Results were promising and showed potential for novel treatment.
Collapse
Affiliation(s)
- Hatice Karabulut
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, New York, USA; Center for Nanotechnology & Biomaterials Research, Marmara University, Istanbul, Turkey
| | - Dingli Xu
- Health Science Center, Ningbo University, Zhejiang, China
| | - Yuxi Ma
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tufan Arslan Tut
- Center for Nanotechnology & Biomaterials Research, Marmara University, Istanbul, Turkey; Department of Metallurgy and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Research, Marmara University, Istanbul, Turkey; Department of Metallurgy and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Orkun Pinar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, 50130, Mikkeli, Finland
| | - Dilek Kazan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey; Bacpolyzyme Bioengineering LLC., Marmara University Technopark., Istanbul, Turkey
| | - Mehmet Mucahit Guncu
- Institute of Health Sciences, Department of Microbiology, Marmara University, Istanbul, Turkey
| | - Ali Sahin
- Department of Biochemistry, School of Medicine/ Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital & Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China..
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Research, Marmara University, Istanbul, Turkey; Department of Metallurgy and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey.
| |
Collapse
|
12
|
Darwesh AY, Zhang Y, Aghda NH, Alkadi F, Maniruzzaman M. Advanced 3D Electrospinning "Xspin" System: Fabrication of Bifiber Floating Oral Pharmaceutical Scaffolds for Controlled Drug Delivery. Mol Pharm 2024; 21:916-931. [PMID: 38235686 DOI: 10.1021/acs.molpharmaceut.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Electrospinning has become a widely used and efficient method for manufacturing nanofibers from diverse polymers. This study introduces an advanced electrospinning technique, Xspin - a multi-functional 3D printing platform coupled with electrospinning system, integrating a customised 3D printhead, MaGIC - Multi-channeled and Guided Inner Controlling printheads. The Xspin system represents a cutting-edge fusion of electrospinning and 3D printing technologies within the realm of pharmaceutical sciences and biomaterials. This innovative platform excels in the production of novel fiber with various materials and allows for the creation of highly customized fiber structures, a capability hitherto unattainable through conventional electrospinning methodologies. By integrating the benefits of electrospinning with the precision of 3D printing, the Xspin system offers enhanced control over the scaffold morphology and drug release kinetics. Herein, we fabricated a model floating pharmaceutical dosage for the dual delivery of curcumin and ritonavir and thoroughly characterized the product. Fourier transform infrared (FTIR) spectroscopy demonstrated that curcumin chemically reacted with the polymer during the Xspin process. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the solid-state properties of the active pharmaceutical ingredient after Xspin processing. Scanning electron microscopy (SEM) revealed the surface morphology of the Xspin-produced fibers, confirming the presence of the bifiber structure. To optimize the quality and diameter control of the electrospun fibers, a design of experiment (DoE) approach based on quality by design (QbD) principles was utilized. The bifibers expanded to approximately 10-11 times their original size after freeze-drying and effectively entrapped 87% curcumin and 84% ritonavir. In vitro release studies demonstrated that the Xspin system released 35% more ritonavir than traditional pharmaceutical pills in 2 h, with curcumin showing complete release in pH 1.2 in 5 min, simulating stomach media. Furthermore, the absorption rate of curcumin was controlled by the characteristics of the linked polymer, which enables both drugs to be absorbed at the desired time. Additionally, multivariate statistical analyses (ANOVA, pareto chart, etc.) were conducted to gain better insights and understanding of the results such as discern statistical differences among the studied groups. Overall, the Xspin system shows significant potential for manufacturing nanofiber pharmaceutical dosages with precise drug release capabilities, offering new opportunities for controlled drug delivery applications.
Collapse
Affiliation(s)
- Alaa Y Darwesh
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677-1848, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677-1848, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Niloofar H Aghda
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Faez Alkadi
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677-1848, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Le LT, Nguyen HT, Nguyen LT, Tran HQ, Nguyen TTT. Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:71-82. [PMID: 38229677 PMCID: PMC10790648 DOI: 10.3762/bjnano.15.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
Hydrophobic berberine powder (BBR) and hydrophilic BBR nanoparticles (BBR NPs) were loaded into an electrospun polylactic acid (PLA) nanofiber scaffold for modulating the release behavior of BBR in an aqueous medium. The BBR release from the BBR/PLA and BBR NPs/PLA nanofiber scaffolds was investigated in relation to their chemical characteristics, BBR dispersion into nanofibers, and wettability. The BBR release profiles strongly influenced the antibacterial efficiency of the scaffolds over time. When the BBR was loaded, the BBR/PLA nanofiber scaffold exhibited an extremely hydrophobic feature, causing a triphasic release profile in which only 9.8 wt % of the loaded BBR was released in the first 24 h. This resulted in a negligible inhibitory effect against methicillin-resistant Staphylococcus aureus bacteria. Meanwhile, the BBR NPs/PLA nanofiber scaffold had more wettability and higher concentration of BBR NPs dispersed on the surface of PLA nanofibers. This led to a sustained release of 75 wt % of the loaded BBR during the first 24 h, and consequently boosted the antibacterial effectiveness. Moreover, the cytotoxicity test revealed that the BBR NPs/PLA nanofiber scaffold did not induce any changes in morphology and proliferation of MA-104 cell monolayers. It suggests that the BBR/PLA and BBR NPs/PLA nanofiber scaffolds can be used in different biomedical applications, such as wound dressing, drug delivery systems, and tissue engineering, according to the requirement of BBR concentration for the desired therapeutic effects.
Collapse
Affiliation(s)
- Le Thi Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Hue Thi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Liem Thanh Nguyen
- School of Material Science and Technology, Hanoi University of Science and Technology, Hanoi 11600, Vietnam
| | - Huy Quang Tran
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi 12116, Vietnam
| | - Thuy Thi Thu Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
14
|
Astaneh ME, Fereydouni N. A focused review on hyaluronic acid contained nanofiber formulations for diabetic wound healing. Int J Biol Macromol 2023; 253:127607. [PMID: 37871723 DOI: 10.1016/j.ijbiomac.2023.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The significant clinical challenge presented by diabetic wounds is due to their impaired healing process and increased risk of complications. It is estimated that a foot ulcer will develop at some point in the lives of 15-25 % of diabetic patients. Serious complications, including infection and amputation, are often led to by these wounds. In the field of tissue engineering and regenerative medicine, nanofiber-based wound dressings have emerged in recent years as promising therapeutic strategies for diabetic wound healing. Hyaluronic acid (HA), among various nanofiber materials, has gained considerable attention due to its unique properties, including biocompatibility, biodegradability, and excellent moisture retention capacity. By promoting skin hydration and controlling inflammation, a crucial role in wound healing is played by HA. Wounds are also helped to heal faster by HA through the regulation of inflammation levels and signaling the body to build more blood vessels in the damaged area. Great potential in various applications, including wound healing, has been shown by the development and use of nanofiber formulations in medicine. However, challenges and limitations associated with nanofibers in medicine exist, such as reproducibility, proper characterization, and biological evaluation. By providing a biomimetic environment that enhances re-epithelialization and facilitates the delivery of active substances, nanofibers promote wound healing. In accelerating wound healing, promising results have been shown by HA-contained nanofiber formulations in diabetic wounds. Key strategies employed by these formulations include revascularization, modulation of the inflammation microenvironment, delivery of active substances, photothermal nanofibers, and nanoparticle-loaded fabrics. Particularly crucial is revascularization as it restores blood flow to the wound area, promoting healing. Wound healing can also be enhanced by modulating the inflammation microenvironment through controlling inflammation levels. Future perspectives in this field involve addressing the current challenges and limitations of nanofiber technology and further optimizing HA-contained nanofiber formulations for improved efficacy in diabetic wound healing. This includes exploring new fabrication techniques, enhancing the biocompatibility and biodegradability of nanofibers, and developing multifunctional nanofibers for targeted drug delivery. Not only does writing a review in the field of nanofiber-based wound dressings, particularly those containing hyaluronic acid, allow us to consolidate our current knowledge and understanding but also broadens our horizons. An opportunity is provided to delve deeper into the intricacies of this innovative therapeutic strategy, explore its potential and limitations, and envision future directions. By doing so, a contribution can be made to the ongoing advancements in tissue engineering and regenerative medicine, ultimately improving the quality of life for patients with diabetic wounds.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
15
|
Gaidau C, Râpă M, Stanca M, Tanase ML, Olariu L, Constantinescu RR, Lazea-Stoyanova A, Alexe CA, Tudorache M. Fish Scale Gelatin Nanofibers with Helichrysum italicum and Lavandula latifolia Essential Oils for Bioactive Wound-Healing Dressings. Pharmaceutics 2023; 15:2692. [PMID: 38140033 PMCID: PMC10747005 DOI: 10.3390/pharmaceutics15122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Essential oils are valuable alternatives to synthetic antibiotics that have the potential to avoid the pathogen resistance side effects generated by leather. Helichrysum italicum and Lavandula latifolia essential oils combined with fish scale gelatin were electrospun using a coaxial technique to design new bioactive materials for skin wound dressings fabrication. Fish scale gelatins were extracted from carp fish scales using two variants of the same method, with and without ethylenediaminetetraacetic acid (EDTA). Both variants showed very good electrospinning properties when dissolved in acetic acid solvent. Fish scale gelatin nanofibers with Helichrysum italicum and Lavandula latifolia essential oil emulsions ensured low microbial load (under 100 CFU/g of total number of aerobic microorganisms and total number of yeasts and filamentous fungi) and the absence of Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 10536, and Candida albicans ATCC 1023 as compared to fish scale gelatin without essential oils, which recommends them for pharmaceutical or topical applications. A scratch-test performed on human dermal fibroblasts proved that the biomaterials contributing to the wound healing process included fish scale gelatin nanofibers without EDTA (0.5% and 1%), fish scale gelatin nanofibers without EDTA and Lavandula latifolia essential oil emulsion (1%), fish scale gelatin nanofibers with EDTA (0.6%), and fish scale gelatin nanofibers with EDTA with Helichrysum italicum essential oil emulsion (1% and 2%).
Collapse
Affiliation(s)
- Carmen Gaidau
- The National Research & Development Institute for Textiles and Leather, Division Leather and Footwear Research Institute, 31251 Bucharest, Romania; (C.G.); (R.R.C.); (C.-A.A.)
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Maria Stanca
- The National Research & Development Institute for Textiles and Leather, Division Leather and Footwear Research Institute, 31251 Bucharest, Romania; (C.G.); (R.R.C.); (C.-A.A.)
| | - Mariana-Luiza Tanase
- SC Biotehnos SA, 3-5 Gorunului Street, 075100 Otopeni, Romania; (M.-L.T.); (L.O.)
| | - Laura Olariu
- SC Biotehnos SA, 3-5 Gorunului Street, 075100 Otopeni, Romania; (M.-L.T.); (L.O.)
| | - Rodica Roxana Constantinescu
- The National Research & Development Institute for Textiles and Leather, Division Leather and Footwear Research Institute, 31251 Bucharest, Romania; (C.G.); (R.R.C.); (C.-A.A.)
| | - Andrada Lazea-Stoyanova
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Cosmin-Andrei Alexe
- The National Research & Development Institute for Textiles and Leather, Division Leather and Footwear Research Institute, 31251 Bucharest, Romania; (C.G.); (R.R.C.); (C.-A.A.)
| | - Madalina Tudorache
- Laboratory for Quality Control and Process Monitoring, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Boulevard, 030018 Bucharest, Romania;
| |
Collapse
|
16
|
Valizadeh A, Asghari S, Abbaspoor S, Jafari A, Raeisi M, Pilehvar Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1909. [PMID: 37258422 DOI: 10.1002/wnan.1909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 06/02/2023]
Abstract
Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saleheh Abbaspoor
- Chemical Engineering Department, School of Engineering, Damghan University, Damghan, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
17
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. A review on current trends and future prospectives of electrospun biopolymeric nanofibers for biomedical applications. Eur Polym J 2023; 197:112352. [DOI: 10.1016/j.eurpolymj.2023.112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Saghebasl S, Amini H, Nobakht A, Haiaty S, Bagheri HS, Hasanpour P, Milani M, Saghati S, Naturi O, Farhadi M, Rahbarghazi R. Polyurethane-based nanofibrous mat containing porphyrin with photosensitivity and bactericidal properties can promote cutaneous tissue healing in rats. J Nanobiotechnology 2023; 21:313. [PMID: 37661273 PMCID: PMC10476421 DOI: 10.1186/s12951-023-02082-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The regeneration of cutaneous tissue is one of the most challenging issues in human regenerative medicine. To date, several studies have been done to promote cutaneous tissue healing with minimum side effects. The healing potential of polyurethane (PU)/Poly (caprolactone)-poly (ethylene glycol)-poly (caprolactone) (PCEC)/chitosan (CS) (PCS) nanofibrous mat with cationic photosensitizer meso tetrakis (N-methyl pyridinium-4-yl) porphyrin tetratosylate salt (TMP) was examined. The CS tripolyphosphate nanoparticles (CSNPs) were prepared and loaded by TMP to provide an efficient drug release system (TMPNPs) for delivery of TMP to promote wound healing. In in vitro setting, parameters such as bactericidal effects, cytocompatibility, and hemolytic effects were examined. The healing potential of prepared nanofibrous mats was investigated in a rat model of full-thickness cutaneous injury. PCS/TMP/TMPNPs nanofibers can efficiently release porphyrin in the aqueous phase. The addition of TMPNPs and CS to the PU backbone increased the hydrophilicity, degradation, and reduced mechanical properties. The culture of human fetal foreskin fibroblasts (HFFF2) on PCS/TMP/TMPNPs scaffold led to an increased survival rate and morphological adaptation analyzed by MTT and SEM images. Irradiation with a red laser (635 nm, 3 J/cm2) for the 30 s reduced viability of S. aureus and E. Coli bacteria plated on PCS/TMP and PCS/TMP/TMPNPs nanofibrous mats compared to PU/PCEC (PC) and PU/PCEC/CS (PCS) groups, indicating prominent antibacterial effects of PCS/TMP and PCS/TMP/TMPNPs nanofibrous (p < 0.05). Data indicated that PCS/TMP/TMPNPs mat enhanced healing of the full-thickness excisional wound in a rat model by the reduction of inflammatory response and fibrotic changes compared to the PC, and PCS groups (p < 0.05). Immunofluorescence imaging indicated that levels of Desmoglein were increased in rats that received PCS/TMP/TMPNPs compared to the other groups. It is found that a PU-based nanofibrous mat is an appropriate scaffold to accelerate the healing of injured skin.
Collapse
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Nobakht
- Research Center of Biosciences & Biotechnology (RCBB), University of Tabriz, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parisa Hasanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mehrdad Farhadi
- Department of Anatomical and Clinical Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
20
|
Paramshetti S, Angolkar M, Al Fatease A, Alshahrani SM, Hani U, Garg A, Ravi G, Osmani RAM. Revolutionizing Drug Delivery and Therapeutics: The Biomedical Applications of Conductive Polymers and Composites-Based Systems. Pharmaceutics 2023; 15:pharmaceutics15041204. [PMID: 37111689 PMCID: PMC10145001 DOI: 10.3390/pharmaceutics15041204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The first conductive polymers (CPs) were developed during the 1970s as a unique class of organic substances with properties that are electrically and optically comparable to those of inorganic semiconductors and metals while also exhibiting the desirable traits of conventional polymers. CPs have become a subject of intensive research due to their exceptional qualities, such as high mechanical and optical properties, tunable electrical characteristics, ease of synthesis and fabrication, and higher environmental stability than traditional inorganic materials. Although conducting polymers have several limitations in their pure state, coupling with other materials helps overcome these drawbacks. Owing to the fact that various types of tissues are responsive to stimuli and electrical fields has made these smart biomaterials attractive for a range of medical and biological applications. For various applications, including the delivery of drugs, biosensors, biomedical implants, and tissue engineering, electrical CPs and composites have attracted significant interest in both research and industry. These bimodalities can be programmed to respond to both internal and external stimuli. Additionally, these smart biomaterials have the ability to deliver drugs in various concentrations and at an extensive range. This review briefly discusses the commonly used CPs, composites, and their synthesis processes. Further highlights the importance of these materials in drug delivery along with their applicability in various delivery systems.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Sultan M Alshahrani
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
- College of Applied Medical Sciences, Bisha University, Bisha 67714, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Gundawar Ravi
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| |
Collapse
|
21
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
22
|
Core/Double-Sheath Composite Fibers from Poly(ethylene oxide), Poly(L-lactide) and Beeswax by Single-Spinneret Electrospinning. Polymers (Basel) 2022; 14:polym14225036. [PMID: 36433168 PMCID: PMC9699041 DOI: 10.3390/polym14225036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The conventional approach for preparation of core-sheath fibers is coaxial electrospinning. Single-spinneret electrospinning of emulsions is a much less common method to obtain core-sheath fibers. Core-sheath structure may be generated by electrospinning of homogeneous blend solutions; however, reports on such cases are still scarce. Herein, the preparation of nanofibrous composites from poly(ethylene oxide) (PEO), poly(L-lactide) (PLA) and beeswax (BW) by single-spinneret electrospinning of their homogeneous blend solutions in chloroform is reported. The produced fibers had core/double-sheath structure with a PEO core, PLA inner sheath and BW outer sheath. This original fiber structure was evidenced by transmission electron microscopy, selective extraction of BW or PEO, and X-ray photoelectron spectroscopy. The PLA/BW double sheath led to hydrophobicity of the PEO/PLA/BW mats. The tensile tests revealed that PEO/PLA/BW mats had substantially improved mechanical behavior as compared to PEO, PLA and PEO/BW mats. PEO/PLA/BW mats can be used as drug carriers as evidenced by the one-pot incorporation of the model drug 5-nitro-8-hydroxyquinoline (NQ) into the fibrous materials. Microbiological tests showed that PEO/PLA/BW/NQ had antimicrobial activity. Therefore, the new materials are promising for wound healing applications.
Collapse
|
23
|
The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers (Basel) 2022; 14:polym14224947. [PMID: 36433073 PMCID: PMC9693208 DOI: 10.3390/polym14224947] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop a novel ultrathin fibrous membrane with a core-sheath structure as an antioxidant food packaging membrane. The core-sheath structure was prepared by coaxial electrospinning, and the release of active substances was regulated by its special structure. Ferulic acid (FA) was incorporated into the electrospun zein/polyethylene oxide ultrathin fibers to ensure their synergistic antioxidant properties. We found that the prepared ultrathin fibers had a good morphology and smooth surface. The internal structure of the fibers was stable, and the three materials that we used were compatible. For the different loading positions, it was observed that the core layer ferulic-acid-loaded fibers had a sustained action, while the sheath layer ferulic-acid-loaded fibers had a pre-burst action. Finally, apples were selected for packaging using fibrous membranes to simulate practical applications. The fibrous membrane was effective in reducing water loss and apple quality loss, as well as extending the shelf life. According to these experiments, the FA-loaded zein/PEO coaxial electrospinning fiber can be used as antioxidant food packaging and will also undergo more improvements in the future.
Collapse
|