1
|
Zhu X, Zhang L, Qi Y, Zhang J, Tang F, Zong Z. A novel strategy for addressing post-surgical abdominal adhesions: Janus hydrogel. Colloids Surf B Biointerfaces 2025; 249:114511. [PMID: 39837049 DOI: 10.1016/j.colsurfb.2025.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
Abdominal adhesions are a frequent complication after abdominal surgery, which can cause significant pain and burden to patients. Despite various treatment options, including surgical intervention and pharmacotherapy, these often fail to consistently and effectively prevent postoperative abdominal adhesions. Janus hydrogel is famous for its asymmetric characteristics, which shows great prospects in the prevention and treatment of abdominal adhesion. This review outlines the preparation methods, mechanisms of action, and key applications of Janus hydrogel in the prevention of postoperative abdominal adhesions. Furthermore, we examine the current limitations of the Janus hydrogel anti-adhesion barrier and explore potential future directions for its development.
Collapse
Affiliation(s)
- Xinhui Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lipeng Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yingcheng Qi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jingyu Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fuxin Tang
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Sadraei A, Naghib SM, Rabiee N. 4D printing chemical stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 2. Expert Opin Drug Deliv 2025:1-20. [PMID: 39953663 DOI: 10.1080/17425247.2025.2466768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION The incorporation of 4D printing alongside chemical stimuli-responsive hydrogels represents a significant advancement in the field of biomedical engineering, effectively overcoming the constraints associated with conventional static 3D-printed structures. Through the integration of time as the fourth dimension, 4D printing facilitates the development of dynamic and adaptable structures that can react to chemical alterations in their surroundings. This innovation presents considerable promise for sophisticated tissue engineering and targeted drug delivery applications. AREAS COVERED This review examines the function of chemical stimuli-responsive hydrogels within the context of 4D printing, highlighting their distinctive ability to undergo regulated transformations when exposed to particular chemical stimuli. An in-depth examination of contemporary research underscores the collaborative dynamics between these hydrogels and their surroundings, focusing specifically on their utilization in biomimetic scaffolds for tissue regeneration and the advancement of intelligent drug delivery systems. EXPERT OPINION The integration of 4D printing technology with chemically responsive hydrogels presents exceptional prospects for advancements in tissue engineering and targeted drug delivery, facilitating the development of personalized and adaptive medical solutions. Although the potential is promising, it is essential to address challenges such as material optimization, biocompatibility, and precise control over stimuli-responsive behavior to facilitate clinical translation and scalability.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Sadraei A, Naghib SM, Rabiee N. 4D printing biological stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 1. Expert Opin Drug Deliv 2025:1-20. [PMID: 39939161 DOI: 10.1080/17425247.2025.2466772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The advent of 3D printing has revolutionized biomedical engineering, yet limitations in creating dynamic human tissues remain. The emergence of 4D printing, which introduces time as a fourth dimension, offers new possibilities by enabling the production of adaptable, stimuli-responsive structures. A thorough literature search was performed across various databases, including Google Scholar, PubMed, Scopus, and Web of Science, to identify pertinent studies published up to 2025. The search parameters were confined to articles published in English that concentrated on peer-reviewed clinical studies. AREAS COVERED This review explores the transition from 3D to 4D printing and focuses on stimuli-responsive materials, particularly hydrogels, which react to environmental changes. The literature search examined recent studies on the interaction of these materials with biological stimuli, emphasizing their application in tissue engineering and drug delivery applications. EXPERT OPINION 4D printing, combined with smart materials, holds immense promise for advancing biomedical treatments, including customized therapies and regenerative medicine. However, technological challenges must be addressed to realize its full potential.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Lekhavadhani S, Babu S, Shanmugavadivu A, Selvamurugan N. Recent progress in alginate-based nanocomposites for bone tissue engineering applications. Colloids Surf B Biointerfaces 2025; 250:114570. [PMID: 39970786 DOI: 10.1016/j.colsurfb.2025.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2024] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Approximately 5-10 % of fractures are associated with non-union, posing a significant challenge in orthopedic applications. Addressing this issue, innovative approaches beyond traditional grafting techniques like bone tissue engineering (BTE) are required. Biomaterials, combined with cells and bioactive molecules in BTE, are critical in managing non-union. Alginate, a natural polysaccharide, has gained widespread recognition in bone regeneration due to its bioavailability, its ability to form gels through crosslinking with divalent cations, and its cost-effectiveness. However, its inherent mechanical weaknesses necessitate a combinatorial approach with other biomaterials. In recent years, nanoscale biomaterials have gained prominence for bone regeneration due to their structural and compositional resemblance to natural bone, offering a supportive environment that regulates cell proliferation and differentiation for new bone formation. In this review, we briefly outline the synthesis of alginate-based nanocomposites using different fabrication techniques, such as hydrogels, 3D-printed scaffolds, fibers, and surface coatings with polymer, ceramic, carbon, metal, or lipid-based nanoparticles. These alginate-based nanocomposites elicit angiogenic, antibacterial, and immunomodulatory properties, thereby enhancing the osteogenic potential as an insightful measure for treating non-union. Despite the existence of similar literature, this work delivers a recent and focused examination of the latest advancements and insights on the potential of alginate-based nanocomposites for BTE applications. This review also underscores the obstacles that alginate-based nanocomposites must overcome to successfully transition into clinical applications.
Collapse
Affiliation(s)
- Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Sushma Babu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
5
|
Madison I, Moreno-Risueno M, Sozzani R. Advancing plant science through precision 3D bioprinting: new tools for research and biotech applications. Curr Opin Biotechnol 2025; 91:103250. [PMID: 39778383 DOI: 10.1016/j.copbio.2024.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The integration of 3D bioprinting into plant science and biotechnology is revolutionizing research and applications. While many high-throughput techniques have advanced plant biology, replicating the complex 3D organization and cellular environments of plant tissues remains a significant challenge. Traditional 2D culture systems fall short of capturing the necessary spatial context for accurate studies of cell behavior, gene expression, and tissue development. Additionally, the lack of precise simulation of plant microenvironments limits control over cellular interactions and responses to external stimuli. Recent advancements in 3D bioprinting address these limitations by allowing precise control over cell positioning and biomaterial arrangement, thereby better replicating natural plant environments. This enables more accurate studies of gene expression, developmental processes, and stress responses. The technology also enhances our ability to test genetic modifications and biotechnological interventions, advancing crop improvement, sustainable agriculture, and precision breeding. This review examines the current state of 3D bioprinting in plant science, discusses its limitations, and explores its potential to transform research and applications in the field.
Collapse
Affiliation(s)
- Imani Madison
- Department of Plant and Microbial Biology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Miguel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid [UPM] - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC [INIA-CSIC]), Madrid, Spain
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Dziewit P, Rajkowski K, Płatek P. Effects of Building Orientation and Raster Angle on the Mechanical Properties of Selected Materials Used in FFF Techniques. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6076. [PMID: 39769675 PMCID: PMC11728033 DOI: 10.3390/ma17246076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Advances in the development of additive manufacturing materials (AM) and the low availability of studies on the impact response of AM specimens are the main reasons for this paper. Therefore, the influence of building orientation (vertical and horizontal) and the angle of the raster (15°/-75°, 30°/-60°, 45°/-45°, and 0°/90°) on the tensile and impact strength of AM specimens was investigated. The polylactic acid (PLA)-PolyMax, Mediflex and acrylonitrile-butadiene-styrene (ABS) filaments were chosen to provide a comprehensive characterization of AM materials with versatile mechanical properties. The experimental results of this study show that the tensile strength and toughness of PolyMax PLA specimens are comparable to ABS specimens, while Mediflex samples are characterized by their higher toughness, but lower impact force needed to break the samples. The Mediflex Charpy fracture surfaces exhibit a ductile character compared to those of brittle ABS and PLA. Furthermore, fracture surface morphology shows the allocation of voids, which helps us to understand differences in mechanical properties, and allows one to properly interpret the results of the geometrical accuracy of AM specimens with various printing settings.
Collapse
Affiliation(s)
- Piotr Dziewit
- Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (K.R.); (P.P.)
| | | | | |
Collapse
|
7
|
Scharf IM, Mathis SA, Bou Zeid N, Saini D, Nahass GR, Arias E, Purnell CA, Zhao L, Patel PK, Alkureishi LW. Rapid-printed Three-dimensional Models for Craniomaxillofacial Trauma. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6308. [PMID: 39583783 PMCID: PMC11584223 DOI: 10.1097/gox.0000000000006308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Background Advances in surgical planning and 3-dimensional (3D) printing have benefitted the field of craniomaxillofacial surgery by allowing visualization of patient anatomy in settings of otherwise restricted surgical fields. Long 3D print times limit the usability of surgical planning workflows in acute trauma reconstruction. We sought to identify variables affecting print time and produce rapid-printed models with sufficient quality for prebending osteosynthesis plates. Methods Three-dimensional printing variables, including resolution, print orientation, and region of interest cropping, were optimized on a single mandibular and midface fracture model to maximize print time efficiency. Five mandibular and 5 midface fractures were printed both in the high-resolution and time-efficient protocol. Fixation plates were contoured to fit the optimized models and computed tomography scan. Distances and volumes between the fracture surface and plate were computed. Results High-resolution mandible models were printed in 7.47 hours and maxillae in 7.53 hours. Optimized models were printed in 0.93 and 1.07 hours, respectively. Cropping to regions of interest, rotating the model, and decreasing print resolution significantly reduced print time. The difference (optimized versus high resolution) in distance between the plate and model averaged 0.22 and 0.34 mm for mandibles and maxillae; the air space volume differed by 1.39 and 0.90 mm3, respectively. Conclusions Adjusting size, resolution, and position on the printing platform allows rapid fabrication of 3D models for surgical reconstruction without sacrificing surface quality. These edits reduce printing time, enabling the implementation of 3D-printing workflows for surgical planning in acute craniomaxillofacial trauma settings.
Collapse
Affiliation(s)
- Isabel M. Scharf
- From the University of Illinois College of Medicine, Chicago, Ill
| | | | - Naji Bou Zeid
- Division of Plastic, Reconstructive, and Cosmetic Surgery, Department of Surgery, University of Illinois Chicago, Chicago, Ill
| | - Devansh Saini
- School of Technology, Eastern Illinois University, Charleston, Ill
| | - George R. Nahass
- From the University of Illinois College of Medicine, Chicago, Ill
| | - Eduardo Arias
- Division of Plastic, Reconstructive, and Cosmetic Surgery, Department of Surgery, University of Illinois Chicago, Chicago, Ill
| | - Chad A. Purnell
- Division of Plastic, Reconstructive, and Cosmetic Surgery, Department of Surgery, University of Illinois Chicago, Chicago, Ill
- Shriners Children’s Hospital, Chicago, Ill
| | - Linping Zhao
- Division of Plastic, Reconstructive, and Cosmetic Surgery, Department of Surgery, University of Illinois Chicago, Chicago, Ill
- Shriners Children’s Hospital, Chicago, Ill
| | - Pravin K. Patel
- Division of Plastic, Reconstructive, and Cosmetic Surgery, Department of Surgery, University of Illinois Chicago, Chicago, Ill
- Shriners Children’s Hospital, Chicago, Ill
| | - Lee W.T. Alkureishi
- Division of Plastic, Reconstructive, and Cosmetic Surgery, Department of Surgery, University of Illinois Chicago, Chicago, Ill
- Shriners Children’s Hospital, Chicago, Ill
| |
Collapse
|
8
|
Rahman MA, Gibbon L, Islam MZ, Hall E, Ulven CA. Adjustment of Mechanical Properties of 3D Printed Continuous Carbon Fiber-Reinforced Thermoset Composites by Print Parameter Adjustments. Polymers (Basel) 2024; 16:2996. [PMID: 39518206 PMCID: PMC11548710 DOI: 10.3390/polym16212996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Reinforcing thermoset polymers with continuous carbon fiber (CF) tow has emerged as a promising avenue to overcome the thermal and mechanical performance limitations of 3D printed polymeric structures for load-bearing applications. Unlike traditional methods, manufacturing continuous fiber-reinforced composites by 3D printing has the unique capability of locally varying the mechanical properties of the composites. In this study, continuous CF thermoset composite specimens were printed with varying line spacing, resin flow rate, and nozzle sizes. The resin flow rates for different line spacings and nozzle sizes were optimized by topographic analysis. Printed composite mechanical properties were evaluated, and their trends were correlated with the trend of print parameter changes. Results showed that tensile strength and modulus could be altered and improved by ~50% by adjusting the printing process parameters. Higher composite strength and modulus were obtained by shortening the line spacing and nozzle diameter.
Collapse
Affiliation(s)
| | | | | | | | - Chad A. Ulven
- Mechanical Engineering Department, College of Engineering, North Dakota State University, Fargo, ND 58108, USA; (M.A.R.); (L.G.); (M.Z.I.); (E.H.)
| |
Collapse
|
9
|
Wei K, Tang C, Ma H, Fang X, Yang R. 3D-printed microrobots for biomedical applications. Biomater Sci 2024; 12:4301-4334. [PMID: 39041236 DOI: 10.1039/d4bm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/24/2024]
Abstract
Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineering, and sensors and actuators. Compared with traditional fabrication methods for microrobots, recent improvements in 3D printers enable them to print high-precision microrobots, breaking through the limitations of traditional micromanufacturing technologies that require high skills for operators and greatly shortening the design-to-production cycle. Here, this review first introduces typical 3D printing technologies used in microrobot manufacturing. Then, the structures of microrobots with different functions and application scenarios are discussed. Next, we summarize the materials (body materials, propulsion materials and intelligent materials) used in 3D microrobot manufacturing to complete body construction and realize biomedical applications (e.g., drug delivery, imaging and monitoring). Finally, the challenges and future prospects of 3D printed microrobots in biomedical applications are discussed in terms of materials, manufacturing and advancement.
Collapse
Affiliation(s)
- Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Chenlong Tang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Kim KH, Kim JH, Hong J, Cha SW. Development of Dynamic Four-Dimensional Printing Technology for Patterned Structures by Applying Microcellular Foaming Process. Polymers (Basel) 2024; 16:2242. [PMID: 39204462 PMCID: PMC11359335 DOI: 10.3390/polym16162242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Four-dimensional (4D) printing adds the dimension of time to 3D-printed specimens, causing movement when external stimuli are applied. This movement enables applications across various fields, including the soft robotics, aerospace, apparel, and automotive industries. Traditionally, 4D printing has utilized special materials such as shape-memory polymers (SMPs) or shape-memory alloys (SMAs) to achieve this movement. This study explores a novel approach to 4D printing by applying microcellular foaming processes (MCPs) to 3D printing. This study primarily aims to design and fabricate patterned specimens using common materials, such as PLA, through 3D printing and to analyze their dynamic behavior under various foaming conditions. To demonstrate the potential applications of this technology, the degree of bending was measured by controlling the patterning and foaming conditions. The 3D-printed specimens with microcellular foaming exhibited predictable deformations owing to the asymmetric expansion caused by differential gas saturation. The results confirm that 4D printing can be realized using conventional materials without the need for smart materials and can introduce foaming processes as a new external stimulus. This study highlights the potential of combining 3D printing with microcellular foaming for advanced 4D printing applications.
Collapse
Affiliation(s)
- Kwan Hoon Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea; (K.H.K.); (J.H.)
| | - Jae Hoo Kim
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea;
| | - Jin Hong
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea; (K.H.K.); (J.H.)
| | - Sung Woon Cha
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea; (K.H.K.); (J.H.)
| |
Collapse
|
11
|
Xie HQ, Xie HT, Luo T, Yang BY, Gan DQ, Liao DF, Cui L, Song L, Xie MM. Design of 3D printing osteotomy block for foot based on triply periodic minimal surface. Sci Rep 2024; 14:15851. [PMID: 38982110 PMCID: PMC11233604 DOI: 10.1038/s41598-024-65318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2023] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
The ankle joint, which connects the lower limbs and the sole of the foot, is prone to sprain during walking and sports, which leads to ankle arthritis. Supratroleolar osteotomy is an ankle preserving operation for the treatment of ankle arthritis, in which the osteotomy is an important fixing and supporting part. In order to avoid stress shielding effect as much as possible, the osteotomy block is designed as a porous structure. In this study, the osteotomy block was designed based on three-period minimal surface, and the designed structure was manufactured by 3D printing. The mechanical properties of different structures were studied by mechanical test and finite element simulation. In mechanical tests, the Gyroid structure showed a progressive failure mechanism from bottom to bottom, while the Diamond structure showed a shear failure zone at 45° Angle, which was not conducive to energy absorption and was more prone to brittle fracture than the Gyroid structure. Therefore, the Gyroid structure is valuable for further research in the development of porous osteotomy.
Collapse
Affiliation(s)
- Hai-Qiong Xie
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Hai-Tao Xie
- XingGuo People's Hospital, Jiangxi, 341000, People's Republic of China
| | - Tao Luo
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Bai-Yin Yang
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Dao-Qi Gan
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Dong-Fa Liao
- Trauma Center, General Hospital of Western Theater Command of PLA, Rongdu Str. 270, Chengdu, 610083, People's Republic of China
| | - Lin Cui
- Trauma Center, General Hospital of Western Theater Command of PLA, Rongdu Str. 270, Chengdu, 610083, People's Republic of China
| | - Lei Song
- Department of Orthopaedics, First Affliated Hospital, Army Medical University, No. 30 Gaotanyanzheng Street, Chongqing, 400038, People's Republic of China.
| | - Mei-Ming Xie
- Trauma Center, General Hospital of Western Theater Command of PLA, Rongdu Str. 270, Chengdu, 610083, People's Republic of China.
| |
Collapse
|
12
|
Monia T. Sustainable natural biopolymers for biomedical applications. JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS 2024; 37:2505-2524. [DOI: 10.1177/08927057231214468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
Abstract
Biopolymers are materials specifically engineered to interact with biological systems. They can be derived from either natural or synthetic sources, depending on the biological resources used or the manufacturing process employed. Over recent decades, these materials have gained significant popularity within the medical field due to their remarkable attributes such as biodegradability, bioactivity, and compatibility with human tissue. One notable application is their use as scaffolds for bone regeneration. Biopolymers, being renewable biomaterials, provide opportunities for continuous manufacturing and technological progress across various industries. These biomaterials have demonstrated great promise in medical sectors, including nerve regeneration and the production of surgical devices. Additionally, their versatility extends to non-biomedical applications, like food packaging. This paper aims to provide a comprehensive overview of different biopolymers, elucidating their properties, showcasing their latest applications, and delving into the state-of-the-art manufacturing technologies used in their production. Special emphasis is placed on their suitability as bone tissue repair and regeneration scaffolds, owing to their unique properties, which render them an ideal choice for this specific application.
Collapse
Affiliation(s)
- Trimeche Monia
- Laboratory of Materials, Optimization and Energy for Sustainability (LAMOED), Department of Industrial Engineering, National School of Engineers of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
13
|
Perambudhuru Y, Goyal L, Dewan M, Mahajan A, Chaudhari PK. Application of 4D printing in dentistry: A narrative review. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:55-63. [PMID: 39027206 PMCID: PMC11252150 DOI: 10.34172/japid.2024.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/15/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
4D printing is an innovative digital manufacturing technology that originated by adding a fourth dimension, i.e., time, to pre-existing 3D technology or additive manufacturing (AM). AM is a fast-growing technology used in many fields, which develops accurate 3D objects based on models designed by computers. Dentistry is one such field in which 3D technology is used for manufacturing objects in periodontics (scaffolds, local drug-delivering agents, augmentation of ridges), implants, prosthodontics (partial and complete dentures, obturators), oral surgery for reconstructing jaw, and orthodontics. Dynamism is a vital property needed for the survival of materials used in the oral cavity since the oral cavity is constantly subjected to various insults. 4D printing technology has overcome the disadvantages of 3D printing technology, i.e., it cannot create dynamic objects. Therefore, constant knowledge of 4D technology is required. 3D printing technology has shortcomings, which are discussed in this review. This review summaries various printing technologies, materials used, stimuli, and potential applications of 4D technology in dentistry.
Collapse
Affiliation(s)
- Yeshwanth Perambudhuru
- Periodontics Division, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Lata Goyal
- Periodontics Division, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Meghna Dewan
- All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Mahajan
- HP Government Dental College, Shimla, Himachal Pradesh, India
| | - Prabhat Kumar Chaudhari
- Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Mahmood A, Perveen F, Chen S, Akram T, Irfan A. Polymer Composites in 3D/4D Printing: Materials, Advances, and Prospects. Molecules 2024; 29:319. [PMID: 38257232 PMCID: PMC10818632 DOI: 10.3390/molecules29020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Additive manufacturing (AM), commonly referred to as 3D printing, has revolutionized the manufacturing landscape by enabling the intricate layer-by-layer construction of three-dimensional objects. In contrast to traditional methods relying on molds and tools, AM provides the flexibility to fabricate diverse components directly from digital models without the need for physical alterations to machinery. Four-dimensional printing is a revolutionary extension of 3D printing that introduces the dimension of time, enabling dynamic transformations in printed structures over predetermined periods. This comprehensive review focuses on polymeric materials in 3D printing, exploring their versatile processing capabilities, environmental adaptability, and applications across thermoplastics, thermosetting materials, elastomers, polymer composites, shape memory polymers (SMPs), including liquid crystal elastomer (LCE), and self-healing polymers for 4D printing. This review also examines recent advancements in microvascular and encapsulation self-healing mechanisms, explores the potential of supramolecular polymers, and highlights the latest progress in hybrid printing using polymer-metal and polymer-ceramic composites. Finally, this paper offers insights into potential challenges faced in the additive manufacturing of polymer composites and suggests avenues for future research in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Ayyaz Mahmood
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 610054, China
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China
| | - Fouzia Perveen
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Shenggui Chen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China
| | - Tayyaba Akram
- Department of Physics, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
15
|
Firoozi AA, Firoozi AA. A systematic review of the role of 4D printing in sustainable civil engineering solutions. Heliyon 2023; 9:e20982. [PMID: 37928382 PMCID: PMC10622610 DOI: 10.1016/j.heliyon.2023.e20982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
This systematic review, not financially supported by any funding body, aims to synthesize the current knowledge on the applications, potential benefits, and challenges of 4D printing in civil engineering, with a focus on its role in sustainable solutions. Comprehensive searches were conducted in Scopus, Web of Science, and Google Scholar using related keywords. Articles that discussed 4D printing within civil engineering and construction contexts, encompassing both conceptual and empirical studies, were included. The findings suggest that 4D printing, with its time-responsive transformation feature, can enhance design freedom, improve structural performance, and increase environmental efficiency in construction. However, challenges persist in material performance, scalability, and cost. Despite these, ongoing advancements signal potential future developments that could widen the opportunities for large-scale applications of 4D printing in civil engineering. The potential use of renewable, bio-based materials could also lead to more sustainable construction practices. This review highlights the transformative potential of 4D printing, underlining the need for further research to fully leverage its capabilities and address current limitations. 4D printing emerges as a promising avenue for sustainable civil engineering solutions, offering a transformative approach that calls for continued exploration and development.
Collapse
Affiliation(s)
- Ali Akbar Firoozi
- Department of Civil Engineering, Faculty of Engineering & Technology, University of Botswana, Gaborone, Botswana
| | - Ali Asghar Firoozi
- Department of Civil Engineering, Faculty of Engineering & Technology, University of Botswana, Gaborone, Botswana
| |
Collapse
|
16
|
Hidalgo-Carvajal D, Muñoz ÁH, Garrido-González JJ, Carrasco-Gallego R, Alcázar Montero V. Recycled PLA for 3D Printing: A Comparison of Recycled PLA Filaments from Waste of Different Origins after Repeated Cycles of Extrusion. Polymers (Basel) 2023; 15:3651. [PMID: 37688276 PMCID: PMC10490016 DOI: 10.3390/polym15173651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The objective of this work is to evaluate the reprocessing of PLA 3D printing waste from different origins, into filaments and films, and without the addition of any additive. Two types of waste were considered: a blend of different printing wastes (masks, visors, other components) of personal protective equipment coming from an association of Spanish coronamakers, and PLA waste from a single known commercial source. Both types of materials were subjected to repeated extrusion cycles and processed into films by compression molding. Samples were characterized after each cycle and their mechanical and viscosity properties evaluated. Diffusion-ordered NMR spectroscopy (DOSY) experiments were also carried out to estimate molecular weights. The results show a better performance for the PLA waste from the known origin, capable of withstanding up to three re-extrusion cycles per two for the waste blending, without significant degradation. Additionally, a model to address collection and mechanical recycling cycles under two different scenarios (full traceability and not full traceability) was proposed.
Collapse
Affiliation(s)
- David Hidalgo-Carvajal
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain (R.C.-G.)
| | - Álvaro Hortal Muñoz
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain (R.C.-G.)
- Dirección de Compras Industrial y Cliente, Repsol, 28006 Madrid, Spain
| | | | - Ruth Carrasco-Gallego
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain (R.C.-G.)
| | - Victoria Alcázar Montero
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain (R.C.-G.)
- Grupo de Investigación Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| |
Collapse
|
17
|
Rodriguez-Vargas BR, Stornelli G, Folgarait P, Ridolfi MR, Miranda Pérez AF, Di Schino A. Recent Advances in Additive Manufacturing of Soft Magnetic Materials: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5610. [PMID: 37629901 PMCID: PMC10456432 DOI: 10.3390/ma16165610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Additive manufacturing (AM) is an attractive set of processes that are being employed lately to process specific materials used in the fabrication of electrical machine components. This is because AM allows for the preservation or enhancement of their magnetic properties, which may be degraded or limited when manufactured using other traditional processes. Soft magnetic materials (SMMs), such as Fe-Si, Fe-Ni, Fe-Co, and soft magnetic composites (SMCs), are suitable materials for electrical machine additive manufacturing components due to their magnetic, thermal, mechanical, and electrical properties. In addition to these, it has been observed in the literature that other alloys, such as soft ferrites, are difficult to process due to their low magnetization and brittleness. However, thanks to additive manufacturing, it is possible to leverage their high electrical resistivity to make them alternative candidates for applications in electrical machine components. It is important to highlight the significant progress in the field of materials science, which has enabled the development of novel materials such as high-entropy alloys (HEAs). These alloys, due to their complex chemical composition, can exhibit soft magnetic properties. The aim of the present work is to provide a critical review of the state-of-the-art SMMs manufactured through different AM technologies. This review covers the influence of these technologies on microstructural changes, mechanical strengths, post-processing, and magnetic parameters such as saturation magnetization (MS), coercivity (HC), remanence (Br), relative permeability (Mr), electrical resistivity (r), and thermal conductivity (k).
Collapse
Affiliation(s)
- Bryan Ramiro Rodriguez-Vargas
- Dipartimento di Ingegneria, Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy; (B.R.R.-V.); (G.S.)
| | - Giulia Stornelli
- Dipartimento di Ingegneria, Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy; (B.R.R.-V.); (G.S.)
| | - Paolo Folgarait
- Seamthesis Srl, Via IV Novembre 156, 29122 Piacenza, Italy; (P.F.); (M.R.R.)
| | - Maria Rita Ridolfi
- Seamthesis Srl, Via IV Novembre 156, 29122 Piacenza, Italy; (P.F.); (M.R.R.)
| | - Argelia Fabiola Miranda Pérez
- Department of Strategic Planning and Technology Management, Universidad Popular Autónoma del Estado de Puebla, 17 Sur, 901, Barrio de Santiago, Puebla 72410, Mexico
| | - Andrea Di Schino
- Dipartimento di Ingegneria, Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy; (B.R.R.-V.); (G.S.)
| |
Collapse
|
18
|
Mamo HB, Adamiak M, Kunwar A. 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives. J Mech Behav Biomed Mater 2023; 143:105930. [PMID: 37267735 DOI: 10.1016/j.jmbbm.2023.105930] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
3D printing, also known as Additive manufacturing (AM), has emerged as a transformative technology with applications across various industries, including the medical sector. This review paper provides an overview of the current status of AM technology, its challenges, and its application in the medical industry. The paper covers the different types of AM technologies, such as fused deposition modeling, stereolithography, selective laser sintering, digital light processing, binder jetting, and electron beam melting, and their suitability for medical applications. The most commonly used biomedical materials in AM, such as plastic, metal, ceramic, composite, and bio-inks, are also viewed. The challenges of AM technology, such as material selection, accuracy, precision, regulatory compliance, cost and quality control, and standardization, are also discussed. The review also highlights the various applications of AM in the medical sector, including the production of patient-specific surgical guides, prosthetics, orthotics, and implants. Finally, the review highlights the Internet of Medical Things (IoMT) and artificial intelligence (AI) for regulatory frameworks and safety standards for 3D-printed biomedical devices. The review concludes that AM technology can transform the healthcare industry by enabling patients to access more personalized and reasonably priced treatment alternatives. Despite the challenges, integrating AI and IoMT with 3D printing technology is expected to play a vital role in the future of biomedical device applications, leading to further advancements and improvements in patient care. More research is needed to address the challenges and optimize its use for medical applications to utilize AM's potential in the medical industry fully.
Collapse
Affiliation(s)
- Hana Beyene Mamo
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland.
| | - Marcin Adamiak
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland
| | - Anil Kunwar
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland
| |
Collapse
|
19
|
Rajendran S, Palani G, Kanakaraj A, Shanmugam V, Veerasimman A, Gądek S, Korniejenko K, Marimuthu U. Metal and Polymer Based Composites Manufactured Using Additive Manufacturing-A Brief Review. Polymers (Basel) 2023; 15:2564. [PMID: 37299364 PMCID: PMC10255547 DOI: 10.3390/polym15112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
This review examines the mechanical performance of metal- and polymer-based composites fabricated using additive manufacturing (AM) techniques. Composite materials have significantly influenced various industries due to their exceptional reliability and effectiveness. As technology advances, new types of composite reinforcements, such as novel chemical-based and bio-based, and new fabrication techniques are utilized to develop high-performance composite materials. AM, a widely popular concept poised to shape the development of Industry 4.0, is also being utilized in the production of composite materials. Comparing AM-based manufacturing processes to traditional methods reveals significant variations in the performance of the resulting composites. The primary objective of this review is to offer a comprehensive understanding of metal- and polymer-based composites and their applications in diverse fields. Further on this review delves into the intricate details of metal- and polymer-based composites, shedding light on their mechanical performance and exploring the various industries and sectors where they find utility.
Collapse
Affiliation(s)
- Sundarakannan Rajendran
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India; (S.R.); (G.P.)
| | - Geetha Palani
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India; (S.R.); (G.P.)
| | - Arunprasath Kanakaraj
- Department of Mechanical Engineering, PSN College of Engineering and Technology, Tirunelveli 627152, India;
| | - Vigneshwaran Shanmugam
- Instituteof Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India;
| | - Arumugaprabu Veerasimman
- Faculty of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India;
| | - Szymon Gądek
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland;
| | - Kinga Korniejenko
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland;
| | - Uthayakumar Marimuthu
- Faculty of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India;
| |
Collapse
|
20
|
A Mechanical Performance Study of Dual Cured Thermoset Resin Systems 3D-Printed with Continuous Carbon Fiber Reinforcement. Polymers (Basel) 2023; 15:polym15061384. [PMID: 36987165 PMCID: PMC10054592 DOI: 10.3390/polym15061384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Additive manufacturing (AM) is one of the fastest-growing manufacturing technologies in modern times. One of the major challenges in the application of 3D-printed polymeric objects is expanding the applications to structural components, as they are often limited by their mechanical and thermal properties. To enhance the mechanical properties of 3D-printed thermoset polymer objects, reinforcing the polymer with continuous carbon fiber (CF) tow is an expanding direction of research and development. A 3D printer was constructed capable of printing with a continuous CF-reinforced dual curable thermoset resin system. Mechanical performance of the 3D-printed composites varied with the utilization of different resin chemistries. Three different commercially available violet light curable resins were mixed with a thermal initiator to improve curing by overcoming the shadowing effect of violet light by the CF. The resulting specimens’ compositions were analyzed, and then the specimens were mechanically characterized for comparison in tensile and flexural performance. The 3D-printed composites’ compositions were correlated to the printing parameters and resin characteristics. Slight enhancements in tensile and flexural properties from some commercially available resins over others appeared to be the result of better wet-out and adhesion.
Collapse
|
21
|
Chaudhary R, Akbari R, Antonini C. Rational Design and Characterization of Materials for Optimized Additive Manufacturing by Digital Light Processing. Polymers (Basel) 2023; 15:287. [PMID: 36679168 PMCID: PMC9866493 DOI: 10.3390/polym15020287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Additive manufacturing technologies are developed and utilized to manufacture complex, lightweight, functional, and non-functional components with optimized material consumption. Among them, vat polymerization-based digital light processing (DLP) exploits the polymerization of photocurable resins in the layer-by-layer production of three-dimensional objects. With the rapid growth of the technology in the last few years, DLP requires a rational design framework for printing process optimization based on the specific material and printer characteristics. In this work, we investigate the curing of pure photopolymers, as well as ceramic and metal suspensions, to characterize the material properties relevant to the printing process, such as penetration depth and critical energy. Based on the theoretical framework offered by the Beer-Lambert law for absorption and on experimental results, we define a printing space that can be used to rationally design new materials and optimize the printing process using digital light processing. The proposed methodology enables printing optimization for any material and printer combination, based on simple preliminary material characterization tests to define the printing space. Also, this methodology can be generalized and applied to other vat polymerization technologies.
Collapse
Affiliation(s)
| | | | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| |
Collapse
|