1
|
Brzoska J, Datta J, Konefał R, Pokorný V, Beneš H. The influence of bio-based monomers on the structure and thermal properties of polyurethanes. Sci Rep 2024; 14:29042. [PMID: 39580483 PMCID: PMC11585547 DOI: 10.1038/s41598-024-80358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Most polyurethanes (PU) are currently produced through the polyaddition reaction of polyisocyanates with polyols and chain extenders, using components of petrochemical origin. From an environmental and geopolitical point of view, and with regard to the problems of oil supply and processing, the replacement of petrochemical PU raw materials with renewable resources is highly desirable. It is also one of the principles of sustainable development and an important challenge for chemical companies and market competitiveness. Current research studies focus mainly on the use of bio-based polyols for PUs, while other PU components, in particular polyisocyanates, remain of petrochemical origin. In this work, a series of PUs have been synthesized by polyaddition reactions of different types of renewable polyols and bio-based polyisocyanates. The effects of the bio-derived components on the structure, thermal stability and phase transformations of the PU were studied using FTIR and NMR spectroscopy, SWAXS, TGA, DSC, DMTA and TGA-FTIR. A full conversion of the bio-based monomers was achieved in all cases, indicating good compatibility and reactivity of all bio-based components. It was observed that bio-based PU exhibited a lower degree of phase separation and slightly lower thermal stability compared to PUs from petrochemical monomers.
Collapse
Affiliation(s)
- Joanna Brzoska
- Faculty of Chemistry, Department of Polymer Technology, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, Gdansk, 80-233, Poland
| | - Janusz Datta
- Faculty of Chemistry, Department of Polymer Technology, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, Gdansk, 80-233, Poland.
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| |
Collapse
|
2
|
Singh P, Priti, Kaur R. Synthesis and Rheological Analysis of Non-Isocyanate Polyurethanes Blended with Poly(vinyl alcohol). J IND ENG CHEM 2024; 139:225-236. [DOI: 10.1016/j.jiec.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Liang C, Jadidi Y, Chen Y, Gracida-Alvarez U, Torkelson JM, Hawkins TR, Dunn JB. Techno-economic Analysis and Life Cycle Assessment of Biomass-Derived Polyhydroxyurethane and Nonisocyanate Polythiourethane Production and Reprocessing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12161-12170. [PMID: 39148516 PMCID: PMC11323267 DOI: 10.1021/acssuschemeng.4c04046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Nonisocyanate polyurethanes (NIPUs) show promise as more sustainable alternatives to conventional isocyanate-based polyurethanes (PUs). In this study, polyhydroxyurethane (PHU) and nonisocyanate polythiourethane (NIPTU) production and reprocessing models inform the results of a techno-economic analysis and a life cycle assessment. The profitability of selling PHU and NIPTU is rationalized by identifying significant production costs, indicating that raw materials drive the costs of PHU and NIPTU production and reprocessing. After stepping along a path of process improvements, PHU and NIPTU can achieve minimum selling prices (MSPs) of 3.15 and 4.39 USD kg-1, respectively. Depolymerization yields need to be optimized, and polycondensation reactions need to be investigated for the reprocessing of NIPUs into secondary (2°) NIPUs. Of the NIPUs examined here, PHU has a low depolymerization yield and NIPTU has a high depolymerization yield. Fossil energy use, greenhouse gas (GHG) emissions, and water consumption are reported for the biobased production of PHU, NIPTU, 2° PHU, and 2° NIPTU and compared with baseline values for fossil-based PU production. There are options for reducing environmental impacts, which could make these pathways more sustainable. If barriers to implementation are overcome, 2° NIPUs can be manufactured at lower cost and environmental impacts than those of virgin NIPUs.
Collapse
Affiliation(s)
- Chao Liang
- Paula
M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Yasheen Jadidi
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern-Argonne
Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Yixuan Chen
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern-Argonne
Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Ulises Gracida-Alvarez
- Systems
Assessment Center, Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - John M. Torkelson
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern-Argonne
Institute of Science and Engineering, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Troy R. Hawkins
- Systems
Assessment Center, Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jennifer B. Dunn
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern-Argonne
Institute of Science and Engineering, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Kosmela P, Sałasińska K, Kowalkowska-Zedler D, Barczewski M, Piasecki A, Saeb MR, Hejna A. Fire-Retardant Flexible Foamed Polyurethane (PU)-Based Composites: Armed and Charmed Ground Tire Rubber (GTR) Particles. Polymers (Basel) 2024; 16:656. [PMID: 38475340 DOI: 10.3390/polym16050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Inadequate fire resistance of polymers raises questions about their advanced applications. Flexible polyurethane (PU) foams have myriad applications but inherently suffer from very high flammability. Because of the dependency of the ultimate properties (mechanical and damping performance) of PU foams on their cellular structure, reinforcement of PU with additives brings about further concerns. Though they are highly flammable and known for their environmental consequences, rubber wastes are desired from a circularity standpoint, which can also improve the mechanical properties of PU foams. In this work, melamine cyanurate (MC), melamine polyphosphate (MPP), and ammonium polyphosphate (APP) are used as well-known flame retardants (FRs) to develop highly fire-retardant ground tire rubber (GTR) particles for flexible PU foams. Analysis of the burning behavior of the resulting PU/GTR composites revealed that the armed GTR particles endowed PU with reduced flammability expressed by over 30% increase in limiting oxygen index, 50% drop in peak heat release rate, as well as reduced smoke generation. The Flame Retardancy Index (FRI) was used to classify and label PU/GTR composites such that the amount of GTR was found to be more important than that of FR type. The wide range of FRI (0.94-7.56), taking Poor to Good performance labels, was indicative of the sensitivity of flame retardancy to the hybridization of FR with GTR components, a feature of practicality. The results are promising for fire protection requirements in buildings; however, the flammability reduction was achieved at the expense of mechanical and thermal insulation performance.
Collapse
Affiliation(s)
- Paulina Kosmela
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Kamila Sałasińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznan, Poland
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| |
Collapse
|
5
|
Białkowska A, Kucharczyk W, Zarzyka I, Hanulikova B, Masař M, Bakar M. Polylactide-Based Nonisocyanate Polyurethanes: Preparation, Properties Evaluation and Structure Analysis. Polymers (Basel) 2024; 16:253. [PMID: 38257051 PMCID: PMC10821433 DOI: 10.3390/polym16020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
This study investigated the successful synthesis and characterization of nonisocyanate polyurethanes (NIPUs) based on polylactide. The NIPUs were synthesized by a condensation reaction of oligomers with hard segments (HSs) and synthesized carbamate-modified polylactic acid containing flexible segments (FSs). The oligomers with HSs were prepared from phenolsulfonic acid (PSA) or a mixture of PSA and hydroxynaphthalenesulfonic acid (HNSA), urea and formaldehyde. The mixing of oligomeric compounds with different amounts of formaldehyde was carried out at room temperature. Obtained NIPU samples with different hard segment content were tested for their mechanical and thermal properties. The tensile strength (TS) of all NIPU samples increased with an increasing amount of HSs, attaining the maximum value at an HS:FS ratio of 1:3. Samples prepared from PSA and HNSA showed higher tensile strength (TS) without significant change in elongation at break compared to the samples based only on PSA. Thermogravimetric analysis data indicated an absence of weight loss for all samples below 100 °C, which can be considered a safe temperature for using NIPU materials. Maximum degradation temperatures reached up to 385 °C. Fourier transform infrared spectroscopy results confirmed the existence of expected specific groups as well as the chemical structure of the prepared polyurethanes. DSC analysis showed the existence of two characteristic phase transitions attributed to the melting and crystallization of hard segments in the NIPU samples.
Collapse
Affiliation(s)
- Anita Białkowska
- Casimir Pulaski Radom University, 29 Malczewskiego Str., 26-610 Radom, Poland;
| | - Wojciech Kucharczyk
- Casimir Pulaski Radom University, 29 Malczewskiego Str., 26-610 Radom, Poland;
| | - Iwona Zarzyka
- Ignacy Łukasiewicz University of Technology in Rzeszow, 12 Powstańców Warszawy Str., 35-959 Rzeszów, Poland;
| | - Barbora Hanulikova
- Tomas Bata University, Tr. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (B.H.); (M.M.)
| | - Milan Masař
- Tomas Bata University, Tr. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (B.H.); (M.M.)
| | | |
Collapse
|
6
|
Mangal M, H S, Bose S, Banerjee T. Innovations in applications and prospects of non-isocyanate polyurethane bioplastics. Biopolymers 2023; 114:e23568. [PMID: 37846654 DOI: 10.1002/bip.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.
Collapse
Affiliation(s)
- Mangal Mangal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Supriya H
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
7
|
Scheelje FCM, Meier MAR. Non-isocyanate polyurethanes synthesized from terpenes using thiourea organocatalysis and thiol-ene-chemistry. Commun Chem 2023; 6:239. [PMID: 37925584 PMCID: PMC10625552 DOI: 10.1038/s42004-023-01041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The depletion of fossil resources as well as environmental concerns contribute to an increasing focus on finding more sustainable approaches for the synthesis of polymeric materials. In this work, a synthesis route towards non-isocyanate polyurethanes (NIPUs) using renewable starting materials is presented. Based on the terpenes limonene and carvone as renewable resources, five-membered cyclic carbonates are synthesized and ring-opened with allylamine, using thiourea compounds as benign and efficient organocatalysts. Thus, five renewable AA monomers are obtained, bearing one or two urethane units. Taking advantage of the terminal double bonds of these AA monomers, step-growth thiol-ene polymerization is performed using different dithiols, to yield NIPUs with molecular weights of above 10 kDa under mild conditions. Variation of the dithiol and amine leads to polymers with different properties, with Mn of up to 31 kDa and Tg's ranging from 1 to 29 °C.
Collapse
Affiliation(s)
- Frieda Clara M Scheelje
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
8
|
Iswanto AH, Lubis MAR, Sutiawan J, Al-Edrus SSO, Lee SH, Antov P, Kristak L, Reh R, Mardawati E, Santoso A, Kusumah SS. Latest Advancements in the Development of High-Performance Lignin- and Tannin-Based Non-Isocyanate Polyurethane Adhesive for Wood Composites. Polymers (Basel) 2023; 15:3864. [PMID: 37835913 PMCID: PMC10575091 DOI: 10.3390/polym15193864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The depletion of natural resources and increasing environmental apprehension regarding the reduction of harmful isocyanates employed in manufacturing polyurethanes (PUs) have generated significant attention from both industrial and academic sectors. This attention is focused on advancing bio-based non-isocyanate polyurethane (NIPU) resins as viable and sustainable substitutes, possessing satisfactory properties. This review presents a comprehensive analysis of the progress made in developing bio-based NIPU polymers for wood adhesive applications. The main aim of this paper is to conduct a comprehensive analysis of the latest advancements in the production of high-performance bio-based NIPU resins derived from lignin and tannin for wood composites. A comprehensive evaluation was conducted on scholarly publications retrieved from the Scopus database, encompassing the period from January 2010 to April 2023. In NIPU adhesive manufacturing, the exploration of substitute materials for isocyanates is imperative, due to their inherent toxicity, high cost, and limited availability. The process of demethylation and carbonation of lignin and tannin has the potential to produce polyphenolic compounds that possess hydroxyl and carbonyl functional groups. Bio-based NIPUs can be synthesized through the reaction involving diamine molecules. Previous studies have provided evidence indicating that NIPUs derived from lignin and tannin exhibit enhanced mechanical properties, decreased curing temperatures and shortened pressing durations, and are devoid of isocyanates. The characterization of NIPU adhesives based on lignin and tannin was conducted using various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF) mass spectrometry, and gel permeation chromatography (GPC). The adhesive performance of tannin-based NIPU resins was shown to be superior to that of lignin-based NIPUs. This paper elucidates the potential of lignin and tannin as alternate sources for polyols in the manufacturing of NIPUs, specifically for their application as wood adhesives.
Collapse
Affiliation(s)
- Apri Heri Iswanto
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (M.A.R.L.); (A.S.); (S.S.K.)
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, National Research and Innovation Agency, Bandung 40600, Indonesia;
| | - Jajang Sutiawan
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (M.A.R.L.); (A.S.); (S.S.K.)
| | | | - Seng Hua Lee
- Department of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Kampus Jengka, Pahang 26400, Malaysia;
| | - Petar Antov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria;
| | - Lubos Kristak
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia; (L.K.); (R.R.)
| | - Roman Reh
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia; (L.K.); (R.R.)
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, National Research and Innovation Agency, Bandung 40600, Indonesia;
- Department of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor 40600, Indonesia
| | - Adi Santoso
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (M.A.R.L.); (A.S.); (S.S.K.)
| | - Sukma Surya Kusumah
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (M.A.R.L.); (A.S.); (S.S.K.)
| |
Collapse
|