1
|
Hassan M, Ikram M, Haider A, Shahzadi I, Moeen S, Ul-Hamid A, Ali G, Ullah H, Ebaid MS, Graeff CFO. Doping dependency of chitosan and PAA controlled CdSe quantum dots for catalytic and bactericidal behavior by inhibiting DNA gyrase and DHFR through molecular docking. Int J Biol Macromol 2024; 288:138690. [PMID: 39672445 DOI: 10.1016/j.ijbiomac.2024.138690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The presence of toxic dyes in industrial waste dramatically diminishes the beneficial effects of remediation efforts. To overcome the hazardous impacts of dyes on biodiversity and environment, we integrated polymers into nanoparticles to substantially enhance their functionality and performance. 2 and 4 wt% of chitosan (CS) and 3 wt% of polyacrylic acid (PAA) doped cadmium selenide (CdSe) nanostructures (NSs) were prepared by co-precipitation approach. CdSe quantum dots (QDs) exhibit a narrow band gap energy, high solubility, and tunable properties, which are appropriate for redox reactions but show less adsorption and catalytic behavior. In this work, catalytic and antibacterial activities of CdSe QDs enhanced upon the integration of PAA due to increment in surface area confirmed by BET analysis. Furthermore, the addition of CS escalates the dye degradation and microbes evolve to the interaction of CdSe surface with the functional groups of CS. Highly doped CdSe shows significant inhibitory zones (8.65 to 9.30 mm) against gram-positive bacteria Staphylococcus aureus (S. aureus). In addition, the inhibitory activity of CS/PAA-CdSe nanostructures against DNA gyrase and dihydrofolate reductase (DHFR) in S. aureus was elucidated using molecular docking investigations, providing a rationale for their bactericidal action.
Collapse
Affiliation(s)
- Mudassir Hassan
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan.
| | - Iram Shahzadi
- School of Pharmacy, University of Management and Technology, Lahore 54770, Pakistan
| | - Sawaira Moeen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Hameed Ullah
- Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil
| | - Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border university, Arar, Saudi Arabia
| | - Carlos F O Graeff
- Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil
| |
Collapse
|
2
|
Abeysekera I, Bosire R, Masese FK, Ndaya D, Kasi RM. Ionic nanoporous membranes from self-assembled liquid crystalline brush-like imidazolium triblock copolymers. SOFT MATTER 2024; 20:6834-6847. [PMID: 39150444 DOI: 10.1039/d4sm00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There is a need to generate mechanically and thermally robust ionic nanoporous membranes for separation and fuel cell applications. Herein, we report a general approach to the preparation of ionic nanoporous membranes through custom synthesis, self-assembly, and subsequent chemical manipulations of ionic brush block copolymers. We synthesized polynorbornene-based triblock copolymers containing imidazolium cations balanced by counter anions in the central block, side-chain liquid crystalline units, and sidechain polylactide end blocks. This unique platform comprises: (1) imidazolium/bis(trifluoromethanesulfonyl)imide (TFSI) as the middle block, which has an excellent ion-exchange ability, (2) cyanobiphenyl liquid crystalline end block, a sterically hindered hydrophobic segment, which is chemically stable and immune to hydroxide attack, (3) polylactide brush-like units on the other end block that is easily etched under mild alkaline conditions and (4) a polynorbornene backbone, a lightly crosslinked system that offers mechanical robustness. These membranes retain their morphology before and after backbone crosslinking as well as etching of polylactide sidechains. The ion exchange performance and dimensional stability of these membranes were investigated by water uptake capability and swelling ratio. Moreover, the length of the carbon spacer in the imidazolium/TFSI central block moiety endowed the membrane with improved ionic conductivity. The ionic nanoporous materials are unusual due to their singular thermal, mechanical, alkaline stability and ion transport properties. Applications of these materials include electrochemical actuators, solid-state ionic nanochannel biosensors, and ion-conducting membranes.
Collapse
Affiliation(s)
- Iyomali Abeysekera
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Reuben Bosire
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Francis K Masese
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Dennis Ndaya
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA
| | - Rajeswari M Kasi
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
He S, Meng Y, Liu J, Huang D, Mi Y, Ma R. Recent Developments in Nanocomposite Membranes Based on Carbon Dots. Polymers (Basel) 2024; 16:1481. [PMID: 38891428 PMCID: PMC11175156 DOI: 10.3390/polym16111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dots (CDs) have aroused colossal attention in the fabrication of nanocomposite membranes ascribed to their ultra-small size, good dispersibility, biocompatibility, excellent fluorescence, facile synthesis, and ease of functionalization. Their unique properties could significantly improve membrane performance, including permeance, selectivity, and antifouling ability. In this review, we summarized the recent development of CDs-based nanocomposite membranes in many application areas. Specifically, we paid attention to the structural regulation and functionalization of CDs-based nanocomposite membranes by CDs. Thus, a detailed discussion about the relationship between the CDs' properties and microstructures and the separation performance of the prepared membranes was presented, highlighting the advantages of CDs in designing high-performance separation membranes. In addition, the excellent optical and electric properties of CDs enable the nanocomposite membranes with multiple functions, which was also presented in this review.
Collapse
Affiliation(s)
- Shuheng He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Yiding Meng
- Zhejiang Institute of Standardization, Hangzhou 310007, China;
| | - Jiali Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Dali Huang
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Yifang Mi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Rong Ma
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Ungureanu C, Răileanu S, Zgârian R, Tihan G, Burnei C. State-of-the-Art Advances and Current Applications of Gel-Based Membranes. Gels 2024; 10:39. [PMID: 38247761 PMCID: PMC10815837 DOI: 10.3390/gels10010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/09/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gel-based membranes, a fusion of polymer networks and liquid components, have emerged as versatile tools in a variety of technological domains thanks to their unique structural and functional attributes. Historically rooted in basic filtration tasks, recent advancements in synthetic strategies have increased the mechanical strength, selectivity, and longevity of these membranes. This review summarizes their evolution, emphasizing breakthroughs that have positioned them at the forefront of cutting-edge applications. They have the potential for desalination and pollutant removal in water treatment processes, delivering efficiency that often surpasses conventional counterparts. The biomedical field has embraced them for drug delivery and tissue engineering, capitalizing on their biocompatibility and tunable properties. Additionally, their pivotal role in energy storage as gel electrolytes in batteries and fuel cells underscores their adaptability. However, despite monumental progress in gel-based membrane research, challenges persist, particularly in scalability and long-term stability. This synthesis provides an overview of the state-of-the-art applications of gel-based membranes and discusses potential strategies to overcome current limitations, laying the foundation for future innovations in this dynamic field.
Collapse
Affiliation(s)
- Camelia Ungureanu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Silviu Răileanu
- Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Science, The National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenţei 313 Street, 060042 Bucharest, Romania;
| | - Roxana Zgârian
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Grațiela Tihan
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Cristian Burnei
- Clinical Department of Orthopedics and Traumatology II, Clinical Emergency Hospital, Calea Floreasca 8, 014461 Bucharest, Romania;
| |
Collapse
|
5
|
Zubair M, Manzar MS, El-Qanni A, Haroon H, Alqahtani HA, Al-Ejji M, Mu'azu ND, AlGhamdi JM, Haladu SA, Al-Hashim D, Ahmed SZ. Biochar-layered double hydroxide composites for the adsorption of tetracycline from water: synthesis, process modeling, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109162-109180. [PMID: 37770741 DOI: 10.1007/s11356-023-29954-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Antibiotic-contaminated water is a crucial issue worldwide. Thus, in this study, the MgFeCa-layered double hydroxides were supported in date palm-derived biochar (B) using co-precipitation, hydrothermal, and co-pyrolysis methods. It closes gaps in composite design for pharmaceutical pollutant removal, advances eco-friendly adsorbents, and advances targeted water cleanup by investigating synthesis methodologies and gaining new insights into adsorption. The prepared B-MgFeCa composites were investigated for tetracycline (TC) adsorption from an aqueous solution. The B-MgFeCa composites synthesized through co-precipitation and hydrothermal methods exhibited better crystallinity, functional groups, and well-developed LDH structure within the biochar matrix. However, the co-pyrolysis method resulted in the LDH structure breakage, leading to the low crystalline composite material. The maximum adsorption of TC onto all B-MgFeCa was obtained at an acidic pH range (4-5). The B-MgFeCa composites produced via hydrothermal and co-pyrolysis methods showed higher and faster TC adsorption than the co-precipitation method. The kinetic results can be better described by Langmuir kinetic and mixed order models at low and high TC concentrations, indicating that the rate-limiting step is mainly associated with active binding sites adsorption. The Sip and Freundlich models showed better fitting with the equilibrium data. The TC removal by B-MgFeCa composites prepared via hydrothermal, the highest estimated uptake which is around 639.76 mg.g-1 according to the Sips model at ambient conditions, and co-pyrolysis was mainly dominated by physical and chemical interactions. The composite obtained via the co-precipitation method adsorbed TC through chemical bonding between surface functional groups with anionic species of TC molecule. The B-MgFeCa composite showed excellent reusability performance for up to five cycles with only a 30% decrease in TC removal efficiency. The results demonstrated that B-MgFeCa composites could be used as promising adsorbent materials for effective wastewater treatment.
Collapse
Affiliation(s)
- Mukarram Zubair
- Environmental Engineering Department, College of Engineering A13, Imam Abdulrahman Bin Faisal University, Main Campus, P.O. Box 1982, Dammam, 34212, Saudi Arabia.
| | - Mohammad Saood Manzar
- Environmental Engineering Department, College of Engineering A13, Imam Abdulrahman Bin Faisal University, Main Campus, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Amjad El-Qanni
- Department of Chemical Engineering, An-Najah National University, Nablus, Palestine
| | - Hajira Haroon
- Department of Environmental Sciences, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Hissah A Alqahtani
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| | - Nuhu Dalhat Mu'azu
- Environmental Engineering Department, College of Engineering A13, Imam Abdulrahman Bin Faisal University, Main Campus, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Jwaher M AlGhamdi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Shamsuddeen A Haladu
- Department of Basic Engineering Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana Al-Hashim
- Environmental Engineering Department, College of Engineering A13, Imam Abdulrahman Bin Faisal University, Main Campus, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Syed Z Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Almesmari A, Baghous N, Ejeh CJ, Barsoum I, Abu Al-Rub RK. Review of Additively Manufactured Polymeric Metamaterials: Design, Fabrication, Testing and Modeling. Polymers (Basel) 2023; 15:3858. [PMID: 37835907 PMCID: PMC10575114 DOI: 10.3390/polym15193858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Metamaterials are architected cellular materials, also known as lattice materials, that are inspired by nature or human engineering intuition, and provide multifunctional attributes that cannot be achieved by conventional polymeric materials and composites. There has been an increasing interest in the design, fabrication, and testing of polymeric metamaterials due to the recent advances in digital design methods, additive manufacturing techniques, and machine learning algorithms. To this end, the present review assembles a collection of recent research on the design, fabrication and testing of polymeric metamaterials, and it can act as a reference for future engineering applications as it categorizes the mechanical properties of existing polymeric metamaterials from literature. The research within this study reveals there is a need to develop more expedient and straightforward methods for designing metamaterials, similar to the implicitly created TPMS lattices. Additionally, more research on polymeric metamaterials under more complex loading scenarios is required to better understand their behavior. Using the right machine learning algorithms in the additive manufacturing process of metamaterials can alleviate many of the current difficulties, enabling more precise and effective production with product quality.
Collapse
Affiliation(s)
- Abdulla Almesmari
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Nareg Baghous
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Chukwugozie J. Ejeh
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Imad Barsoum
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Engineering Mechanics, Royal Institute of Technology (KTH), Teknikringen 8, 100 44 Stockholm, Sweden
| | - Rashid K. Abu Al-Rub
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
7
|
Raota CS, Crespo JDS, Baldasso C, Giovanela M. Development of a Green Polymeric Membrane for Sodium Diclofenac Removal from Aqueous Solutions. MEMBRANES 2023; 13:662. [PMID: 37505027 PMCID: PMC10383731 DOI: 10.3390/membranes13070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Water-soluble polymers provide an alternative to organic solvent requirements in membrane manufacture, aiming at accomplishing the Green Chemistry principles. Poly(vinyl alcohol) (PVA) is a biodegradable and non-toxic polymer renowned for its solubility in water. However, PVA is little explored in membrane processes due to its hydrophilicity, which reduces its stability and performance. Crosslinking procedures through an esterification reaction with carboxylic acids can address this concern. For this, experimental design methodology and statistical analysis were employed to achieve the optimal crosslinking conditions of PVA with citric acid as a crosslinker, aiming at the best permeate production and sodium diclofenac (DCF) removal from water. The membranes were produced following an experimental design and characterized using multiple techniques to understand the effect of crosslinking on the membrane performance. Characterization and filtration results demonstrated that crosslinking regulates the membranes' properties, and the optimized conditions (crosslinking at 110 °C for 110 min) produced a membrane able to remove 44% DCF from water with a permeate production of 2.2 L m-2 h-1 at 3 bar, comparable to commercial loose nanofiltration membranes. This study contributes to a more profound knowledge of green membranes to make water treatment a sustainable practice in the near future.
Collapse
Affiliation(s)
- Camila Suliani Raota
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Franscisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Franscisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| | - Camila Baldasso
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Franscisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Franscisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| |
Collapse
|