1
|
Frangopoulos T, Ketesidis A, Marinopoulou A, Goulas A, Petridis D, Karageorgiou V. Accelerated Life Testing of Biodegradable Starch Films with Nanoclay Using the Elongation Level as a Stressor. Foods 2024; 13:3333. [PMID: 39456395 PMCID: PMC11506849 DOI: 10.3390/foods13203333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
An attempt was made to evaluate the elongation level as a stressor on biodegradable starch films reinforced with nanoclay using a simple linear model. A total of 120 film units were subjected to increasing elongation levels and the exact break time of the failed units was monitored. Nine different attempts were made to fit the data distribution and the lognormal distribution was chosen as the most suitable because it resulted in the lowest values of the regression fit indices -2LL, AICc and BIC. Following the selection of the best fit, it was, generally, observed that an increase in the elongation level resulted in the decreasing exact break time of the films. Among several models, the best fit was provided by the simple linear model. Based on this model, the acceleration factor was estimated, and it was shown that it increased exponentially while increasing the elongation level. Finally, the probability of failure and the hazard rate of the film units as a function of the elongation level were estimated, demonstrating the applicability of this method as a tool for food packaging film failure prediction.
Collapse
|
2
|
Phang HC, Ng ZQ, Mohamad N, Chew YL, Balaraman A, Kee PE, Mishima K, Goh BH, Ming LC, Liew KB. Comparison of oven drying and freeze drying methods for the production of fast melt films containing quetiapine fumarate. Drug Dev Ind Pharm 2024:1-17. [PMID: 39320267 DOI: 10.1080/03639045.2024.2409168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Quetiapine fumarate (QTP) is commonly prescribed for schizophrenic patient, typically available in tablet or oral suspension form, presenting challenges such as administration difficulties, fear of choking and distaste for its bitter taste. Fast melt films (FMF) offer an alternative dosage form with a simple development process, ease of administration and rapid drug absorption and action onset. OBJECTIVE This study aims to prepare FMF with different formulations using solvent casting methods and to compare the effects of different drying methods, including oven drying and freeze drying, on the properties of the films. METHODS Various formulations were created by manipulating polymer types (starch, hydroxypropyl methylcellulose (HPMC) and guar gum) at different concentrations, along with fixed concentrations of QTP and other excipients. Characterization tests including surface morphology, weight, thickness, pH, tensile strength, elongation length, Young's modulus, folding endurance and disintegration time were conducted. The optimal FMF formulation was identified and further evaluated for moisture and drug content, dissolution behavior, accelerated stability, X-ray diffraction (XRD), and palatability. RESULTS FMF containing 10 mg guar gum/film developed using oven drying emerged as the optimum choice, exhibiting desirable film appearance, ultra-thin thickness (0.453 ± 0.002 mm), appropriate pH for oral intake (pH 5.0), optimal moisture content of 11.810%, rapid disintegration (52.67 ± 1.53 s), high flexibility (folding endurance > 300 times) and lower Young's modulus (1.308 ± 0.214). CONCLUSION Oven drying method has been proven to be favorable for developing FMF containing QTP, meeting all testing criteria and providing an alternative option for QTP prescription.
Collapse
Affiliation(s)
- Hiu Ching Phang
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya,Malaysia
| | - Zhi Qi Ng
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya,Malaysia
| | - Najwa Mohamad
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya,Malaysia
| | - Yik Ling Chew
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ashok Balaraman
- Research Management Unit, University of Cyberjaya, Cyberjaya, Malaysia
| | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taiwan
| | - Kenji Mishima
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Jonan-ku, Japan
- Research Institute of Composite Materials, Fukuoka University, Jonan-ku, Japan
| | - Bey Hing Goh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya,Malaysia
| |
Collapse
|
3
|
Wang Y, Ju J, Diao Y, Zhao F, Yang Q. The application of starch-based edible film in food preservation: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-34. [PMID: 38712440 DOI: 10.1080/10408398.2024.2349735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.
Collapse
Affiliation(s)
- Yihui Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Yuduan Diao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Schutz GF, de Ávila Gonçalves S, Alves RMV, Vieira RP. A review of starch-based biocomposites reinforced with plant fibers. Int J Biol Macromol 2024; 261:129916. [PMID: 38311134 DOI: 10.1016/j.ijbiomac.2024.129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
Renewable and biodegradable resources have gained increasing attention as promising alternatives to synthetic plastics. Among the diverse raw materials employed in bioplastics production, starch emerges as an attractive, low-cost, and largely available source. However, the inherent properties of starch-based materials often limit their utility across various applications, necessitating strategic modifications to enhance their performance. A common approach to boost these materials involves incorporating natural fillers into biopolymer matrices. Incorporating natural fibers within starch matrices enables the development of biocomposites with improved properties while retaining their renewable and biodegradable characteristics. This review briefly addresses fundamental aspects of starch structure, obtention, and processing, as well as the main pre-treatments of natural fibers and processing methods currently applied to produce starch-based composites. It also highlights the most recent advances in this field, elucidates the effect of the incorporation of fibers on the biocomposite properties, and discusses the critical parameters affecting the synergic combination between starch and fibers.
Collapse
Affiliation(s)
- Guilherme Frey Schutz
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil.
| | - Sayeny de Ávila Gonçalves
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil
| | - Rosa Maria Vercelino Alves
- Instituto de Tecnologia de Alimentos (ITAL), Centro de Tecnologia de Embalagem (CETEA), Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
El Hani O, García-Guzmán JJ, Palacios-Santander JM, Digua K, Amine A, Cubillana-Aguilera L. Development of a molecularly imprinted membrane for selective, high-sensitive, and on-site detection of antibiotics in waters and drugs: Application for sulfamethoxazole. CHEMOSPHERE 2024; 350:141039. [PMID: 38147923 DOI: 10.1016/j.chemosphere.2023.141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
Sulfonamides are among the widespread bacterial antibiotics. Despite this, their quick emergence constitutes a serious problem for ecosystems and human health. Therefore, there is an increased interest in developing relevant detection method for antibiotics in different matrices. In this work, a straightforward, green, and cost-effective protocol was proposed for the preparation of a selective molecularly imprinted membrane (MIM) of sulfamethoxazole (SMX), a commonly used antibiotic. Thus, cellulose acetate was used as the functional polymer, while polyethylene glycol served as a pore-former. The developed MIM was successfully characterized through scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The MIM was used as a sensing platform in conjunction with a smartphone for optical readout, enabling on-site, selective, and highly sensitive detection of SMX. In this way, a satisfactory imprinting factor of around 3.6 and a limit of detection of 2 ng mL-1 were reached after applying response surface methodologies, including Box-Behnken and central composite designs. Besides, MIM demonstrated its applicability for the accurate and selective detection of SMX in river waters, wastewater, and drugs. Additionally, the MIM was shown to be a valuable sorbent in a solid-phase extraction protocol, employing a spin column setup that offered rapid and reproducible results. Furthermore, the developed sensing platform exhibited notable regeneration properties over multiple cycles and long shelf-life in different storage conditions. The newly developed methodology is of crucial importance to overcome the limitations of classical imprinting polymers. Furthermore, the smartphone-based platform was used to surpass the typically expensive and complicated methods of detection.
Collapse
Affiliation(s)
- Ouarda El Hani
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia, Morocco; Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain.
| | - Khalid Digua
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia, Morocco.
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
6
|
Koshy JT, Vasudevan D, Sangeetha D, Prabu AA. Biopolymer Based Multifunctional Films Loaded with Anthocyanin Rich Floral Extract and ZnO Nano Particles for Smart Packaging and Wound Healing Applications. Polymers (Basel) 2023; 15:polym15102372. [PMID: 37242946 DOI: 10.3390/polym15102372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/28/2023] Open
Abstract
There are significant societal repercussions from our excessive use of plastic products derived from petroleum. In response to the increasing environmental implications of plastic wastes, biodegradable materials have been proven to be an effective means of mitigating environmental issues. Therefore, protein- and polysaccharide-based polymers have gained widespread attention recently. In our study, for increasing the strength of a biopolymer (Starch), we used ZnO dispersed nanoparticles (NPs), which resulted in the enhancement of other functional properties of the polymer. The synthesized NPs were characterized using SEM, XRD, and Zeta potential values. The preparation techniques are completely green, with no hazardous chemicals employed. The floral extract employed in this study is Torenia fournieri (TFE), which is prepared using a mixture of ethanol and water and possesses diverse bioactive features and pH-sensitive characteristics. The prepared films were characterized using SEM, XRD, FTIR, contact angle and TGA. The incorporation of TFE and ZnO (SEZ) NPs was found to increase the overall nature of the control film. The results obtained from this study confirmed that the developed material is suitable for wound healing and can also be used as a smart packaging material.
Collapse
Affiliation(s)
- Jijo Thomas Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Devipriya Vasudevan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Dhanaraj Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|