1
|
Martincic M, Sandoval S, Oró-Solé J, Tobías-Rossell G. Thermal Stability and Purity of Graphene and Carbon Nanotubes: Key Parameters for Their Thermogravimetric Analysis (TGA). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1754. [PMID: 39513833 PMCID: PMC11547994 DOI: 10.3390/nano14211754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Thermal analysis is widely employed for the characterization of nanomaterials. It encompasses a variety of techniques that allow the evaluation of the physicochemical properties of a material by monitoring its response under controlled temperature. In the case of carbon nanomaterials, such as carbon nanotubes and graphene derivatives, thermogravimetric analysis (TGA) is particularly useful to determine the quality and stability of the sample, the presence of impurities and the degree of functionalization or doping after post-synthesis treatments. Furthermore, TGA is widely used to evaluate the thermal stability against oxidation by air, which can be, for instance, enhanced by the purification of the material and by nitrogen doping, finding application in areas where a retarded combustion of the material is required. Herein, we have evaluated key parameters that play a role in the data obtained from TGA, namely, gas flow rate, sample weight and temperature rate, used during the analysis. We found out that the heating rate played the major role in the process of combustion in the presence of air, inducing an increase in the temperature at which the oxidation of CNTs starts to occur, up to ca. 100 °C (from 1 °C min-1 to 50 °C min-1). The same trend was observed for all the evaluated systems, namely N-doped CNTs, graphene produced by mechanical exfoliation and N-doped reduced graphene samples. Other aspects, like the presence of impurities or structural defects in the evaluated samples, were analyzed by TGA, highlighting the versatility and usefulness of the technique to provide information of structural aspects and properties of carbon materials. Finally, a set of TGA parameters are recommended for the analysis of carbon nanomaterials to obtain reliable data.
Collapse
Affiliation(s)
| | | | | | - Gerard Tobías-Rossell
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain; (M.M.); (S.S.); (J.O.-S.)
| |
Collapse
|
2
|
Viola V, D’Angelo A, Vertuccio L, Catauro M. Metakaolin-Based Geopolymers Filled with Industrial Wastes: Improvement of Physicochemical Properties through Sustainable Waste Recycling. Polymers (Basel) 2024; 16:2118. [PMID: 39125144 PMCID: PMC11313737 DOI: 10.3390/polym16152118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The increasing global demand for cement significantly impacts greenhouse gas emissions and resource consumption, necessitating sustainable alternatives. This study investigates fresh geopolymer (GP) pastes incorporating 20 wt.% of five industrial wastes-suction dust, red mud from alumina production, electro-filter dust, and extraction sludges from food supplement production and from partially stabilized industrial waste-as potential replacements for traditional cement. Consistent synthesis methods are used to prepare the geopolymers, which are characterized for their physicochemical, mechanical, and biological properties. Ionic conductivity and pH measurements together with integrity tests, thermogravimetry analysis (TGA), and leaching analysis are used to confirm the stability of the synthesized geopolymers. Fourier-transform Infrared (FT-IR) spectroscopy is used to follow geopolymerization occurrences. Results for ionic conductivity, pH, and integrity revealed that the synthesized GPs were macroscopically stable. TGA revealed that the main mass losses were ascribable to water dehydration and to water entrapped in the geopolymer networks. Only the GP filled with the powder of the red mud coming from alumina production experienced a mass loss of 23% due to a partial waste degradation. FT-IR showed a red shift in the main Si-O-(Si or Al) absorption band, indicating successful geopolymer network formations. Additionally, most of the GPs filled with the wastes exhibited higher compressive strength (37.8-58.5 MPa) compared to the control (22 MPa). Only the GP filled with the partially stabilized industrial waste had a lower mechanical strength as its structure was highly porous because of gas formation during geopolymerization reactions. Despite the high compressive strength (58.5 MPa) of the GP filled with suction dust waste, the concentration of Sb leached was 25 ppm, which limits its use. Eventually, all samples also demonstrated effective antimicrobial activity against Escherichia coli and Staphylococcus aureus due to the alkaline environment and the presence of metal cations able to react with the bacterial membranes. The findings revealed the possibility of recycling these wastes within several application fields.
Collapse
Affiliation(s)
| | - Antonio D’Angelo
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, I-81031 Aversa, Italy; (V.V.); (L.V.); (M.C.)
| | | | | |
Collapse
|
3
|
Ai X, Liu Z, Wang T, Xie Q, Xie W. POSS hybrid bioactive glass dental composite resin materials: Synthesis and analysis. J Dent 2024; 142:104860. [PMID: 38281618 DOI: 10.1016/j.jdent.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION This study create a dental composite by hybirding polyhedral oligo-sesquioxide nano monomers and bioactive glass BG 45S5. METHODS Make an experimental composite resin material with a 60 % filler content overall by substituting 20 % of the filler with BG 45S5. The experimental resins are grouped and named P0, P2, P4, P6 and P8 based on the reactive nanomonomer methacrylic acid-based multifaceted oligomeric sesquisiloxane (POSS) added by 2 %-8 % in the resin matrix portion of each group. Utilize a universal testing machine to analyze and compare the mechanical properties of these, then perform Fourier infrared spectrum analysis, double bond conversion analysis, and scanning electron microscope analysis. Based on this, after soaking the experimental materials artificial saliva solution or lactic acid solution for a while, the pH changes of the solution, the release of Ca2+ and PO43- ions, and the precipitation of apatite on the resin material's surface were tested and analyzed. Cell viability tests were used to assess sample cell viability and quantify the cytotoxicity of biological cells. The independent sample t-test was used to examine the group comparisons, and a difference was considered statistically significant at P<0.05. RESULTS Outstanding mechanical and the double bond conversion are demonstrated by the nanocomposites when the POSS concentration hits 4 wt%. Agglomeration will cause the performance to deteriorate if the concentration beyond this threshold. In the P4 group, the double bond conversion, CS, and FS rose by a large margin, respectively, in comparison to the blank control group P0. Thankfully, the data demonstrate that adding POSS increases adhesive ability when compared to the blank group P0, however, there is no discernible difference between the other experimental groups. The acid neutralization capacity of the P4 group is essentially the same as that of the control group (P0). Ca2+ and PO43- ions are released in significant amounts following treatment with lactic acid solution, although this tendency is clearly less pronounced in artificial saliva. SEM and EDX data indicate that when the experimental resin is soaked in lactic acid solution and artificial saliva, apatite precipitation will happen on its surface. The results of the cell viability test indicated that there was no statistically significant difference between the experimental groups, and the viability of the cells increased after 24hours and 48 hours. CONCLUSIONS POSS was included into the composite resin along with 20% bioactive glass as a filler. When the proportion of POSS is less than 4%, the indices of composite resin materials rise in a dose-dependent way. When this value is surpassed, performance begins to deteriorate. The inclusion of POSS has no influence on the biological activity of the composites, which means that the hybrid composite resin is capable of acid neutralization, ion release, and apatite precipitation. CLINICAL SIGNIFICANCE The experimental composite resin can be used as an intelligent material in clinical treatment. It has the clinical application potential of preventing demineralization of tooth hard tissue, promoting remineralization, and improving edge sealing through apatite precipitation.
Collapse
Affiliation(s)
- XuanMei Ai
- The First Affiliated Hospital Of Harbin Medical Uhiversity, School of Stomatology, Harbin Medical University, Harbin 150001, China.
| | - ZhaoNan Liu
- The First Affiliated Hospital Of Harbin Medical Uhiversity, School of Stomatology, Harbin Medical University, Harbin 150001, China.
| | - TianQi Wang
- The First Affiliated Hospital Of Harbin Medical Uhiversity, School of Stomatology, Harbin Medical University, Harbin 150001, China.
| | - Qi Xie
- Department of Stomatology, Harbin Medical University, Harbin 150001, China.
| | - WeiLi Xie
- The First Affiliated Hospital Of Harbin Medical Uhiversity, School of Stomatology, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
4
|
Zheng K, Zhang Y, Qiu J, Xie G, Huang Z, Lin W, Liu Z, Liu Q, Wang X. Flame-Retardant GF-PSB/DOPO-POSS Composite with Low Dk/Df and High Thermal Stability for High-Frequency Copper Clad Applications. Polymers (Basel) 2024; 16:544. [PMID: 38399922 PMCID: PMC10892954 DOI: 10.3390/polym16040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
In the field of high-frequency communications devices, there is an urgent need to develop high-performance copper clad laminates (CCLs) with low dielectric loss (Df) plus good flame retardancy and thermal stability. The hydrocarbon resin styrene-butadiene block copolymer (PSB) was modified with the flame-retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/polyhedral oligomeric silsesquioxanes (DOPO-POSS) to meet the demands of high-frequency and high-speed applications. The resulting DOPO-POSS-modified PSB was used as the resin matrix along with other additives to fabricate PSB/DOPO-POSS laminates. At a high-frequency of 10 GHz, the laminates containing 20 wt.% of DOPO-POSS and with a thickness of 0.09 mm exhibited a Df of 0.00328, which is much lower compared with the commercial PSB/PX-200 composite (Df: 0.00498) and the PSB without flame retardancy (Df: 0.00453). Afterwards, glass fiber cloth (GF) was used as a reinforcing material to manufacture GF-PSB/DOPO-POSS composite laminates with a thickness of 0.25 mm. The flame retardancy of GF-PSB/DOPO-POSS composite laminate reached vertical burning (UL-94) V-1 grade, and GF-PSB/DOPO-POSS exhibited higher thermal and dynamic mechanical properties than GF-PSB/PX-200. The results of a limited oxygen index (LOI) and self-extinguishing time tests also demonstrated the superior flame-retardant performance of DOPO-POSS compared with PX-200. The investigation indicates that GF-PSB/DOPO-POSS composite laminates have significant potential for use in fabricating a printed circuit board (PCB) for high-frequency and high-speed applications.
Collapse
Affiliation(s)
- Ke Zheng
- Sub Center of Dongguan University of Technology of National Engineering Research Center of Electronic Circuits Base Materials, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; (K.Z.); (Y.Z.); (Z.L.)
| | - Yizhi Zhang
- Sub Center of Dongguan University of Technology of National Engineering Research Center of Electronic Circuits Base Materials, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; (K.Z.); (Y.Z.); (Z.L.)
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Zengbiao Huang
- National Engineering Research Center of Electronic Circuits Base Materials, SHENGYI Technology Co., Ltd., Dongguan 523808, China; (Z.H.); (W.L.); (Q.L.)
| | - Wei Lin
- National Engineering Research Center of Electronic Circuits Base Materials, SHENGYI Technology Co., Ltd., Dongguan 523808, China; (Z.H.); (W.L.); (Q.L.)
| | - Zhimeng Liu
- Sub Center of Dongguan University of Technology of National Engineering Research Center of Electronic Circuits Base Materials, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; (K.Z.); (Y.Z.); (Z.L.)
| | - Qianfa Liu
- National Engineering Research Center of Electronic Circuits Base Materials, SHENGYI Technology Co., Ltd., Dongguan 523808, China; (Z.H.); (W.L.); (Q.L.)
| | - Xiaoxia Wang
- Sub Center of Dongguan University of Technology of National Engineering Research Center of Electronic Circuits Base Materials, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; (K.Z.); (Y.Z.); (Z.L.)
| |
Collapse
|
5
|
Barra G, Guadagno L, Raimondo M, Santonicola MG, Toto E, Vecchio Ciprioti S. A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications. Polymers (Basel) 2023; 15:3786. [PMID: 37765641 PMCID: PMC10535285 DOI: 10.3390/polym15183786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
This review article provides an exhaustive survey on experimental investigations regarding the thermal stability assessment of polymers and polymer-based composites intended for applications in the aeronautical and space fields. This review aims to: (1) come up with a systematic and critical overview of the state-of-the-art knowledge and research on the thermal stability of various polymers and composites, such as polyimides, epoxy composites, and carbon-filled composites; (2) identify the key factors, mechanisms, methods, and challenges that affect the thermal stability of polymers and composites, such as the temperature, radiation, oxygen, and degradation; (3) highlight the current and potential applications, benefits, limitations, and opportunities of polymers and composites with high thermal stability, such as thermal control, structural reinforcement, protection, and energy conversion; (4) give a glimpse of future research directions by providing indications for improving the thermal stability of polymers and composites, such as novel materials, hybrid composites, smart materials, and advanced processing methods. In this context, thermal analysis plays a crucial role in the development of polyimide-based materials for the radiation shielding of space solar cells or spacecraft components. The main strategies that have been explored to improve the processability, optical transparency, and radiation resistance of polyimide-based materials without compromising their thermal stability are highlighted. The combination of different types of polyimides, such as linear and hyperbranched, as well as the incorporation of bulky pendant groups, are reported as routes for improving the mechanical behavior and optical transparency while retaining the thermal stability and radiation shielding properties. Furthermore, the thermal stability of polymer/carbon nanocomposites is discussed with particular reference to the role of the filler in radiation monitoring systems and electromagnetic interference shielding in the space environment. Finally, the thermal stability of epoxy-based composites and how it is influenced by the type and content of epoxy resin, curing agent, degree of cross-linking, and the addition of fillers or modifiers are critically reviewed. Some studies have reported that incorporating mesoporous silica micro-filler or microencapsulated phase change materials (MPCM) into epoxy resin can enhance its thermal stability and mechanical properties. The mesoporous silica composite exhibited the highest glass transition temperature and activation energy for thermal degradation among all the epoxy-silica nano/micro-composites. Indeed, an average activation energy value of 148.86 kJ/mol was recorded for the thermal degradation of unfilled epoxy resin. The maximum activation energy range was instead recorded for composites loaded with mesoporous microsilica. The EMC-5p50 sample showed the highest mean value of 217.6 kJ/mol. This remarkable enhancement was ascribed to the polymer invading the silica pores and forging formidable interfacial bonds.
Collapse
Affiliation(s)
- Giuseppina Barra
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| |
Collapse
|
6
|
Guadagno L, Naddeo C, Sorrentino A, Raimondo M. Thermo-Mechanical Performance of Epoxy Hybrid System Based on Carbon Nanotubes and Graphene Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2427. [PMID: 37686935 PMCID: PMC10489851 DOI: 10.3390/nano13172427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
This study focuses on epoxy hybrid systems prepared by incorporating multi-wall carbon nanotubes (MWCNTs) and graphene nanosheets (GNs) at two fixed filler amounts: below (0.1 wt%) and above (0.5 wt%), with varying MWCNT:GN mix ratios. The hybrid epoxy systems exhibited remarkable electrical performance, attributed to the π-π bond interactions between the multi-wall carbon nanotubes and the graphene layers dispersed in the epoxy resin matrix. The material's properties were characterized through dynamic mechanical and thermal analyses over a wide range of temperatures. In addition to excellent electrical properties, the formulated hybrid systems demonstrated high mechanical performance and thermal stability. Notably, the glass transition temperature of the samples reached 255 °C, and high storage modulus values at elevated temperatures were observed. The hybrid systems also displayed thermal stability up to 360 °C in air. By comparing the mechanical and electrical performance, the formulation can be optimized in terms of the electrical percolation threshold (EPT), electrical conductivity, thermostability, and mechanical parameters. This research provides valuable insights for designing advanced epoxy-based materials with multifunctional properties.
Collapse
Affiliation(s)
- Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.G.); (C.N.)
| | - Carlo Naddeo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.G.); (C.N.)
| | - Andrea Sorrentino
- Institute for Polymers, Composites, and Biomaterials (IPCB-CNR), Via Previati n. 1/E, 23900 Lecco, Italy;
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.G.); (C.N.)
| |
Collapse
|