1
|
Liang HY, Lee WK, Hsu JT, Shih JY, Ma TL, Vo TTT, Lee CW, Cheng MT, Lee IT. Polycaprolactone in Bone Tissue Engineering: A Comprehensive Review of Innovations in Scaffold Fabrication and Surface Modifications. J Funct Biomater 2024; 15:243. [PMID: 39330219 PMCID: PMC11433047 DOI: 10.3390/jfb15090243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Bone tissue engineering has seen significant advancements with innovative scaffold fabrication techniques such as 3D printing. This review focuses on enhancing polycaprolactone (PCL) scaffold properties through structural modifications, including surface treatments, pore architecture adjustments, and the incorporation of biomaterials like hydroxyapatite (HA). These modifications aim to improve scaffold conformation, cellular behavior, and mechanical performance, with particular emphasis on the role of mesenchymal stem cells (MSCs) in bone regeneration. The review also explores the potential of integrating nanomaterials and graphene oxide (GO) to further enhance the mechanical and biological properties of PCL scaffolds. Future directions involve optimizing scaffold structures and compositions for improved bone tissue regeneration outcomes.
Collapse
Affiliation(s)
- Hsin-Yu Liang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Wei-Keung Lee
- Department of Physical Medicine and Rehabilitation, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
| | - Jui-Tsen Hsu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Jie-Yu Shih
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Tien-Li Ma
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh 70000, Vietnam;
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan;
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Sinwu Branch, Taoyuan 32748, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| |
Collapse
|
2
|
Cavallo L, Menotti F, Roana J, Costa C, Longo F, Pagano C, Curtoni A, Bondi A, Banche G, Allizond V, Mandras N. Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris. Pharmaceutics 2024; 16:957. [PMID: 39065654 PMCID: PMC11279409 DOI: 10.3390/pharmaceutics16070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, a large number of nosocomial infections have been caused by an emerging pathogen that is rising as a worldwide issue in human health: Candida auris. This yeast is considered resistant to antifungals of the first-line therapies, and consequently it is related to morbidity and mortality. Therefore, the aim of this research was to determine the in vitro anti-C. auris activity against twenty-three resistant clinical strains of different essential oils (EOs), pure or in combination with traditional antifungal agents, mainly caspofungin, fluconazole, micafungin and 5-flucytosine. Broth dilution assay was performed to evaluate the fungistatic and fungicidal effectiveness of fifteen EOs towards all the C. auris isolates. The data demonstrated that EOs were able to prevent C. auris growth, with MIC values ranging from 0.03 to 1% for the efficacious EOs (thyme, cinnamon, geranium, clove bud, lemongrass and mentha of Pancalieri), whereas the MICs were >1% for the ineffective ones. Thereafter, the six most effective EOs were used to perform the checkerboard experiments by assaying simultaneously the activity of EOs and traditional antifungals towards two selected strains. The most promising synergic combinations towards C. auris, depending on the isolate, were those with micafungin and geranium, thyme, cinnamon, lemongrass or clove bud EOs, with fluconazole and mentha of Pancalieri EO, and with 5-flucytosine and mentha of Pancalieri EO. These EOs and their combinations with antifungal drugs may provide a useful therapeutic alternative that could reduce the dose of the individual components, limiting the overall side effects. These associations might be a prospective option for the future treatment of infections, thus helping to overcome the challenging issue of resistance in C. auris.
Collapse
Affiliation(s)
- Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Janira Roana
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Cristina Costa
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Claudia Pagano
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Antonio Curtoni
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Alessandro Bondi
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| |
Collapse
|
3
|
Coppola B, Menotti F, Longo F, Banche G, Mandras N, Palmero P, Allizond V. New Generation of Osteoinductive and Antimicrobial Polycaprolactone-Based Scaffolds in Bone Tissue Engineering: A Review. Polymers (Basel) 2024; 16:1668. [PMID: 38932017 PMCID: PMC11207319 DOI: 10.3390/polym16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.
Collapse
Affiliation(s)
- Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| |
Collapse
|
4
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
5
|
Menotti F, Scutera S, Maniscalco E, Coppola B, Bondi A, Costa C, Longo F, Mandras N, Pagano C, Cavallo L, Banche G, Malandrino M, Palmero P, Allizond V. Is Silver Addition to Scaffolds Based on Polycaprolactone Blended with Calcium Phosphates Able to Inhibit Candida albicans and Candida auris Adhesion and Biofilm Formation? Int J Mol Sci 2024; 25:2784. [PMID: 38474027 DOI: 10.3390/ijms25052784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Candida spp. periprosthetic joint infections are rare but difficult-to-treat events, with a slow onset, unspecific symptoms or signs, and a significant relapse risk. Treatment with antifungals meets with little success, whereas prosthesis removal improves the outcome. In fact, Candida spp. adhere to orthopedic devices and grow forming biofilms that contribute to the persistence of this infection and relapse, and there is insufficient evidence that the use of antifungals has additional benefits for anti-biofilm activity. To date, studies on the direct antifungal activity of silver against Candida spp. are still scanty. Additionally, polycaprolactone (PCL), either pure or blended with calcium phosphate, could be a good candidate for the design of 3D scaffolds as engineered bone graft substitutes. Thus, the present research aimed to assess the antifungal and anti-biofilm activity of PCL-based constructs by the addition of antimicrobials, for instance, silver, against C. albicans and C. auris. The appearance of an inhibition halo around silver-functionalized PCL scaffolds for both C. albicans and C. auris was revealed, and a significant decrease in both adherent and planktonic yeasts further demonstrated the release of Ag+ from the 3D constructs. Due to the combined antifungal, osteoproliferative, and biodegradable properties, PCL-based 3D scaffolds enriched with silver showed good potential for bone tissue engineering and offer a promising strategy as an ideal anti-adhesive and anti-biofilm tool for the reduction in prosthetic joints of infections caused by Candida spp. by using antimicrobial molecule-targeted delivery.
Collapse
Affiliation(s)
- Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Eleonora Maniscalco
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Alessandro Bondi
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Cristina Costa
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Claudia Pagano
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Mery Malandrino
- Department of Chemistry, NIS Interdepartmental Centre, University of Torino, 10125 Turin, Italy
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| |
Collapse
|