1
|
Loureiro MV, Aguiar A, dos Santos RG, Bordado JC, Pinho I, Marques AC. Design of Experiment for Optimizing Microencapsulation by the Solvent Evaporation Technique. Polymers (Basel) 2023; 16:111. [PMID: 38201776 PMCID: PMC10780531 DOI: 10.3390/polym16010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
We employed microemulsion combined with the solvent evaporation technique to produce biodegradable polycaprolactone (PCL) MCs, containing encapsulated isophorone diisocyanate (IPDI), to act as crosslinkers in high-performance adhesive formulations. The MC production process was optimized by applying a design of experiment (DoE) statistical approach, aimed at decreasing the MCs' average size. For that, three different factors were considered, namely the concentration of two emulsifiers, polyvinyl alcohol (PVA) and gum arabic (GA); and the oil-to-water phase ratio of the emulsion. The significance of each factor was evaluated, and a predictive model was developed. We were able to decrease the average MC size from 326 μm to 70 µm, maintaining a high encapsulation yield of approximately 60% of the MCs' weight, and a very satisfactory shelf life. The MCs' average size optimization enabled us to obtain an improved distributive and dispersive mixture of isocyanate-loaded MCs at the adhesive bond. The MCs' suitability as crosslinkers for footwear adhesives was assessed following industry standards. Peel tests revealed peel strength values above the minimum required for casual footwear, while the creep test results indicated an effective crosslinking of the adhesive. These results confirm the ability of the MCs to release IPDI during the adhesion process and act as crosslinkers for new adhesive formulations.
Collapse
Affiliation(s)
- Mónica V. Loureiro
- CERENA—Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal; (A.A.); (R.G.d.S.); (J.C.B.)
| | - António Aguiar
- CERENA—Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal; (A.A.); (R.G.d.S.); (J.C.B.)
| | - Rui G. dos Santos
- CERENA—Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal; (A.A.); (R.G.d.S.); (J.C.B.)
| | - João C. Bordado
- CERENA—Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal; (A.A.); (R.G.d.S.); (J.C.B.)
| | - Isabel Pinho
- CIPADE—Indústria e Investigação de Produtos Adesivos, SA. Av. Primeiro de Maio 121, 3700-227 São João da Madeira, Portugal;
| | - Ana C. Marques
- CERENA—Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal; (A.A.); (R.G.d.S.); (J.C.B.)
| |
Collapse
|
2
|
Emulsion Stabilization Strategies for Tailored Isocyanate Microcapsules. Polymers (Basel) 2023; 15:polym15020403. [PMID: 36679282 PMCID: PMC9865233 DOI: 10.3390/polym15020403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
We report on the stabilization of an oil-in-water (O/W) emulsion to, combined with interfacial polymerization, produce core-shell polyurea microcapsules (MCs) containing isophorone diisocyanate (IPDI). These will act as crosslinkers for mono-component adhesives. The emulsion stabilization was evaluated using three types of stabilizers, a polysaccharide (gum arabic) emulsifier, a silicone surfactant (Dabco®DC193), a rheology modifier (polyvinyl alcohol), and their combinations. Emulsion sedimentation studies, optical microscopy observation, and scanning electron microscopy enabled us to assess the emulsions stability and droplet size distribution and correlate them to the MCs morphology. Fourier transform infrared spectroscopy and thermogravimetric analysis revealed the MCs composition and enabled us to evaluate the encapsulation yield. All stabilizers, except DC193, led to spherical, loose, and core-shelled MCs. The rheology modifier, which increases the continuous phase viscosity, reduces the emulsion droplets sedimentation, keeping their size constant during the MCs' synthesis. This allowed us to obtain good quality MCs, with a smaller average diameter, of approximately 40.9 µm mode, a narrower size distribution and 46 wt% of encapsulated IPDI. We show the importance of the emulsion stability to tune the MCs morphology, size, and size distribution, which are critical for improved homogeneity and performance when used, e.g., in natural and synthetic adhesive formulations industry.
Collapse
|
3
|
Santos ANB, Santos DJD, Carastan DJ. Microencapsulation of reactive isocyanates for application in self-healing materials: a review. J Microencapsul 2021; 38:338-356. [PMID: 33938373 DOI: 10.1080/02652048.2021.1921068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microencapsulation of curing agents is a major strategy for the development of self-healing polymers. Isocyanates are among the most promising compounds for the development of one-part, catalyst free, self-healing materials, but their microencapsulation is challenging due to their high reactivity. To keep the healing agent intact in the liquid state and containing free-NCO groups, the monitoring of several synthesis parameters is essential. This review aims to summarise the outcomes in the microencapsulation of isocyanates, emphasising the efforts reported in the literature to modulate the microcapsule properties. In this regard, the main synthesis procedures are presented, followed by the most relevant characterisation methods used to assess microcapsule properties. The correlation between these properties and synthesis parameters is also discussed, and finally the main potential and challenges for industrial applications are highlighted.
Collapse
Affiliation(s)
- Amanda N B Santos
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André, Brazil
| | - Demetrio J Dos Santos
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André, Brazil.,Material Science and Engineering Graduate Program (PPG-CEM), Federal University of ABC (UFABC), Santo André, Brazil
| | - Danilo J Carastan
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André, Brazil.,Material Science and Engineering Graduate Program (PPG-CEM), Federal University of ABC (UFABC), Santo André, Brazil
| |
Collapse
|
4
|
Costa M, Pinho I, Loureiro MV, Marques AC, Simões CL, Simoes R. Optimization of a microfluidic process to encapsulate isocyanate for autoreactive and ecological adhesives. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Hydrophilic modification and cross-linking of polystyrene using the synthesized N,N′-(hexane-1,6-diyl)diacrylamide. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Chen H, Liu X, Wang H, Wu S, Li J, Jin C, Xu H. Polyurea microencapsulate suspension: An efficient carrier for enhanced herbicidal activity of pretilachlor and reducing its side effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123744. [PMID: 33254770 DOI: 10.1016/j.jhazmat.2020.123744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/22/2020] [Accepted: 08/16/2020] [Indexed: 06/12/2023]
Abstract
In this study, Pretilachlor polyurea microencapsulate suspension (PMS) with effective controlled release function was carefully prepared. Under the optimal conditions, wall material PM-200 dosage 4%, emulsifier T-60 dosage 4% with S-20 as solvent, the prepared PMS was demonstrated to have encapsulation efficiency approaching to 95.27 ± 0.57 % and high suspension rates of 97.33 ± 0.49 %. Afterwards, PMS was proved to possess average release rate reached to 85.56 %, 55.46 % and 15.85 % respectively in acidic, basic and natural medium. Subsequently, the herbicidal activity of PMS on barnyard grass and the growth safety of rice were evaluated. PMS showed enhanced herbicidal activity against barnyard grass and had lower toxicity to rice growth compared with technical pretilachlor at dose 270-540 g (a.i.)/hm2. In addition, the use safety of PMS was validated to be comparable to that of commercially available pretilachlor emulsifiable concentrate containing additive safener at dose 270-540 g (a.i.)/hm2. Moreover, inhibitory effect of PMS on rice growth was demonstrated to completely eliminated by cooperatively treatment with fenclorim. It was concluded that PMS had enhanced herbicidal activity and application safety, meeting the requirements of minimizing adverse effects of the herbicide on the environment, and enjoying a great application potential in agriculture.
Collapse
Affiliation(s)
- Hongjun Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, 417000, PR China
| | - Xiu Liu
- Key Laboratory of Pesticide Harmless Application of Hunan Higher Education/Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Provience, Loudi, 417000, PR China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Hongkun Wang
- Key Laboratory of Pesticide Harmless Application of Hunan Higher Education/Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Provience, Loudi, 417000, PR China; Forestry Bureau of Lanshan County, Lanshan, 425800, PR China
| | - Siyu Wu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Jingbo Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Chenzhong Jin
- Key Laboratory of Pesticide Harmless Application of Hunan Higher Education/Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Provience, Loudi, 417000, PR China.
| | - Hanhong Xu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
7
|
Idumah CI, Obele CM, Emmanuel EO, Hassan A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-corrosion, Anti-fouling and Self-healing. SURFACES AND INTERFACES 2020; 21:100734. [PMID: 34957345 PMCID: PMC7531442 DOI: 10.1016/j.surfin.2020.100734] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 05/21/2023]
Abstract
Recent nanotechnological advancements have enabled novel innovations in protective polymer nanocomposites (PNC) coatings for anti-corrosion, anti-fouling and self-healing services on material surfaces. Nanotechnology encompases research, manufacturing, and application of nanoparticulate architectures, tubular structures, sheets or plates exhibiting sizes below 100 nanometers (nm) in at least a single dimension. Inclusions of nanoparticles into organic entities have demonstrated enhanced properties essential for attainiment of aesthetics, anti-corrosion, thermal stability for high-temperature performances, mechanical strength essential for resisting coating deterioration in harsh environments, nano-architectural cross-linking capable of hindering penetration of corrosive, and biofouling entities. Unlike previously published literature, this paper elucidates very recently emerging important advancements in novel techniques utilized in developing PNC coatings for applications in aerospace, packaging, automotive, biomedicine, maritime, and oil and gas industries for attaining superior anti-fouling, anti-corrosion, and self-healing behaviors on critical material surfaces. Emerging market structures and novel applications are also presented.
Collapse
Affiliation(s)
- Christopher Igwe Idumah
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Anambra State, Nigeria
| | - Chizoba May Obele
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Anambra State, Nigeria
| | - Ezeani O Emmanuel
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Anambra State, Nigeria
| | - Azman Hassan
- Faculty of Chemical and Energy Engineering, Enhanced Polymer Research Group, Department of Polymer Engineering, Universiti Teknologi Malaysia
| |
Collapse
|
8
|
Chen H, Liu X, Deng S, Wang H, Ou X, Huang L, Li J, Jin C. Pretilachlor Releasable Polyurea Microcapsules Suspension Optimization and Its Paddy Field Weeding Investigation. Front Chem 2020; 8:826. [PMID: 33195036 PMCID: PMC7642302 DOI: 10.3389/fchem.2020.00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, pretilachlor was encapsulated into polyurea microcapsules prepared by water-initiated polymerization of polyaryl polymethylene isocyanate and eventually made into pretilachlor microcapsules suspension (PMS). We used response surface methodology (RSM) combined with the Box–Behnken design (BBD) model to optimize the formulation of PMS. The encapsulation efficiency (EE) of PMS was investigated with respect to three independent variables including wall material dosage (X1), emulsifier dosage (X2), and polymerization stirring speed (X3). The results showed that the regression equation model had a satisfactory accuracy in predicting the EE of PMS. To achieve an optimal condition for PMS preparation, the dose of wall material was set to 5%, the dose of emulsifier was set to 3.5% and the polymerization stirring speed was set to 200 rpm. The EE of PMS was up to 95.68% under the optimized condition, and the spherical shape with smooth surface morphology was observed. PMS was also proven to have delayed release capability and in vivo herbicidal activity against barnyard grass [Echinochloa crusgalli (L.) Beauv.] with an LC50 value of 274 mg/L. Furthermore, PMS had efficient weed management compared to commercially available 30% pretilachlor emulsifier (PE), showing a promising potential application for weeding paddy fields.
Collapse
Affiliation(s)
- Hongjun Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Xiu Liu
- Key Laboratory of Pesticide Harmless Application in Hunan Higher Education, Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Shuqi Deng
- Key Laboratory of Pesticide Harmless Application in Hunan Higher Education, Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Hongkun Wang
- Key Laboratory of Pesticide Harmless Application in Hunan Higher Education, Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, China.,Forestry Bureau of Lanshan County, Lanshan, China
| | - Xiaoming Ou
- National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha, China
| | - Linya Huang
- Key Laboratory of Pesticide Harmless Application in Hunan Higher Education, Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Jingbo Li
- Key Laboratory of Pesticide Harmless Application in Hunan Higher Education, Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Chenzhong Jin
- Key Laboratory of Pesticide Harmless Application in Hunan Higher Education, Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, China
| |
Collapse
|
9
|
Yang H, Mo Q, Li W, Gu F. Preparation and Properties of Self-Healing and Self-Lubricating Epoxy Coatings with Polyurethane Microcapsules Containing Bifunctional Linseed Oil. Polymers (Basel) 2019; 11:polym11101578. [PMID: 31569715 PMCID: PMC6836264 DOI: 10.3390/polym11101578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
An organic coating is commonly used to protect metal from corrosion, but it is prone to failure due to microcracks generated by internal stress and external mechanical action. The self-healing and self-lubricating achieved in the coating is novel, which allows an extension of life by providing resistance to damage and repair after damage. In this study, a new approach to microencapsulating bifunctional linseed oil with polyurethane shell by interfacial polymerization. Moreover, the self-healing and self-lubricating coatings with different concentrations of microcapsules were developed. The well-dispersed microcapsules showed a regular spherical morphology with an average diameter of ~64.9 μm and a core content of 74.0 wt.%. The results of the salt spray test demonstrated that coatings containing microcapsules still possess anticorrosion, which is improved with the increase of microcapsules content, after being scratched. The results of electrochemical impedance spectroscopy showed a |Z|f=0.01Hz value of 104 Ω·cm2 for pure epoxy coating after being immersed for 3 days, whereas the coating with 20 wt.% microcapsules was the highest, 1010 Ω·cm2. The results of friction wear showed that the tribological performance of the coating was enhanced greatly as microcapsule concentration reached 10 wt.% or more, which showed a 86.8% or more reduction in the friction coefficient compared to the pure epoxy coating. These results indicated that the coatings containing microcapsules exhibited excellent self-healing and self-lubricating properties, which are positively correlated with microcapsules content.
Collapse
Affiliation(s)
- Haijuan Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Qiufeng Mo
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Weizhou Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Fengmei Gu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Guo M, Li W, Han N, Wang J, Su J, Li J, Zhang X. Novel Dual-Component Microencapsulated Hydrophobic Amine and Microencapsulated Isocyanate Used for Self-Healing Anti-Corrosion Coating. Polymers (Basel) 2018; 10:E319. [PMID: 30966353 PMCID: PMC6415046 DOI: 10.3390/polym10030319] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022] Open
Abstract
Dual component microencapsulated hydrophobic amine and microencapsulated isocyanate were designed and fabricated for self-healing anti-corrosion coating. In this system, novel hydrophobic polyaspartic acid ester (PAE) and isophorone diisocyanate (IPDI) were microencapsulated respectively with melamine-formaldehyde (MF) as shell via in situ polymerization. To reduce the reaction activity between shell-forming MF prepolymer and PAE, another self-healing agent tung oil (TO) was dissolved in PAE and subsequently employed as core material. With field-emission scanning electron microscopy (FE-SEM) and optical microscopy (OM), the resultant microencapsulated IPDI with diameter of 2⁻5 μm showed a spherical shape and smooth surface. More importantly, both the morphology and microstructure of microencapsulated PAE enhanced significantly after addition of TO. Fourier transform infrared spectra (FTIR) analysis confirmed the molecular structure of chemical structure of the microcapsules. Thermal gravimetric analysis (TGA) indicated that both kinds of microcapsules exhibit excellent thermal resistance with the protection of MF shell. Furthermore, the self-healing epoxy coating system containing microencapsulated IPDI and microencapsulated PAE/TO was prepared and investigated. From the micrographs of true color confocal microscope (TCCM), the self-healing coating containing dual-component microcapsules showed excellent self-repairing performance compared to single microencapsulated IPDI system, and the optimal content of dual-component microcapsules in epoxy coating was 20 wt % approximately.
Collapse
Affiliation(s)
- Maolian Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Wei Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Tianjin Colouroad Coatings & Chemicals Co., Ltd., Tianjin 300457, China.
| | - Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jianping Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Junfeng Su
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jianjie Li
- Tianjin Colouroad Coatings & Chemicals Co., Ltd., Tianjin 300457, China.
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|