1
|
Zhang Z, Hu L, Wang R, Zhang S, Fu L, Li M, Xiao Q. Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling. Polymers (Basel) 2024; 16:545. [PMID: 38399924 PMCID: PMC10891544 DOI: 10.3390/polym16040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Conductive polymer composites (CPCs) filled with carbon-based materials are widely used in the fields of antistatic, electromagnetic interference shielding, and wearable electronic devices. The conductivity of CPCs with a carbon-based filling is reflected by their electrical percolation behavior and is the focus of research in this field. Compared to experimental methods, Monte Carlo simulations can predict the conductivity and analyze the factors affecting the conductivity from a microscopic perspective, which greatly reduces the number of experiments and provides a basis for structural design of conductive polymers. This review focuses on Monte Carlo models of CPCs with a carbon-based filling. First, the theoretical basis of the model's construction is introduced, and a Monte Carlo simulation of the electrical percolation behaviors of spherical-, rod-, disk-, and hybridfilled polymers and the analysis of the factors influencing the electrical percolation behavior from a microscopic point of view are summarized. In addition, the paper summarizes the progress of polymer piezoresistive models and polymer foaming structure models that are more relevant to practical applications; finally, we discuss the shortcomings and future research trends of existing Monte Carlo models of CPCs with carbon-based fillings.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Z.Z.); (L.F.)
| | - Liang Hu
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China;
| | - Rui Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Z.Z.); (L.F.)
| | - Shujie Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Z.Z.); (L.F.)
| | - Lisong Fu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Z.Z.); (L.F.)
| | - Mengxuan Li
- College of Fine Arts & Design, Tianjin Normal University, Tianjin 300387, China;
| | - Qi Xiao
- School of Textile Garment and Design, Changshu Institute of Technology, Changshu 215500, China;
| |
Collapse
|
2
|
Liu Y, Zhang J, Zhang Y, Yoon HY, Jia X, Roman M, Johnson BN. Accelerated Engineering of Optimized Functional Composite Hydrogels via High-Throughput Experimentation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37905949 DOI: 10.1021/acsami.3c11483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The Materials Genome Initiative (MGI) seeks to accelerate the discovery and engineering of advanced materials via high-throughput experimentation (HTE), which is a challenging task, given the common trade-off between design for optimal processability vs performance. Here, we report a HTE method based on automated formulation, synthesis, and multiproperty characterization of bulk soft materials in well plate formats that enables accelerated engineering of functional composite hydrogels with optimized properties for processability and performance. The method facilitates rapid high-throughput screening of hydrogel composition-property relations for multiple properties in well plate formats. The feasibility and utility of the method were demonstrated by application to several functional composite hydrogel systems, including alginate/poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) dimethacrylate (PEGDMA)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hydrogels. The HTE method was leveraged to identify formulations of conductive PEGDMA/PEDOT:PSS composite hydrogels for optimized performance and processability in three-dimensional (3D) printing. This work provides an advance in experimental methods based on automated dispensing, mixing, and sensing for the accelerated engineering of soft functional materials.
Collapse
Affiliation(s)
- Yang Liu
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Junru Zhang
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hu Young Yoon
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Blake N Johnson
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Rahaman M. Superior mechanical, electrical, dielectric, and EMI shielding properties of ethylene propylene diene monomer (EPDM) based carbon black composites. RSC Adv 2023; 13:25443-25458. [PMID: 37636513 PMCID: PMC10448605 DOI: 10.1039/d3ra04187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
In this study, the mechanical, electrical, dielectric, and electromagnetic interference (EMI) shielding properties of ethylene propylene diene monomer (EPDM) based carbon black composites, namely high abrasion furnace (HAF) and conductive Printex blacks, were investigated and their effectiveness compared. The results show that Printex black filled composites exhibited superior properties in all aspects compared to HAF filled composites. The electrical percolation threshold value of Printex black filled composites was approximately 1/2 to 1/3 lower compared to HAF black filled composites based on classical theory and the Sigmoidal model. Moreover, the tensile modulus, dielectric permittivity, and EMI shielding efficiency (SE) of the Printex black filled composites were 4.6 times, in the order of 106 at 1 kHz, and 6.65 times improved compared to HAF black filled composites at their 40 phr loadings, respectively. The Printex black filled 40 phr loaded composite showed an EMI SE of 49.94 dB that is 99.999% the attenuation of EM radiation. These properties can be attributed to the high structure of Printex black, which facilitates the ease of formation of the conductive channel through the polymer matrix, higher reinforcement, higher interfacial polarization, and high absorption of radiation. These properties were compared with some published literature on carbon black filled composites and it was found that the results of the Printex black filled composites are highly competitive with the published work. The results show that these composites are highly effective for load bearing materials, supercapacitors, and EM radiation protection.
Collapse
Affiliation(s)
- Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
4
|
Rahaman M, Gupta P, Hossain M, Periyasami G, Das P. Effect of carbons' structure and type on AC electrical properties of polymer composites: predicting the percolation threshold of permittivity through different models. Colloid Polym Sci 2023; 301:1-19. [PMID: 37360022 PMCID: PMC10203672 DOI: 10.1007/s00396-023-05120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
The AC electrical properties of EVA- and NBR-based composites filled with different conductive fillers were investigated. Result shows several magnitudes of increment in AC electrical conductivity and dielectric permittivity after the addition of these conductive fillers, indicating that these materials can be used as supercapacitors. The magnitude of increment was varied according to polymer and filler types. Herein, we also have tested the applicability of different sigmoidal models to find out the percolation threshold value of permittivity for these binary polymer composite systems. It is observed that except sigmoidal-Boltzmann and sigmoidal-dose-response models, other sigmoidal models exhibit different values of percolation threshold when considered for any particular polymer composite system. The paper discusses the variation in results of percolation threshold with an emphasis on the advantages, disadvantages and limitations of these models. We also have applied the classical percolation theory to predict the percolation threshold of permittivity and compared with all the reported sigmoidal models. To judge the unanimous acceptability of these models, they tested vis-à-vis the permittivity results of various polymer composites reported in published literature. To comprehend, all the models except the sigmoidal-logistic-1 model were successfully applicable for predicting the percolation threshold of permittivity for polymer composites. Supplementary Information The online version contains supplementary material available at 10.1007/s00396-023-05120-2.
Collapse
Affiliation(s)
- Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Prashant Gupta
- MIT-Centre for Advanced Materials Research and Technology (M-CAMRT), Department of Plastic and Polymer Engineering, Maharashtra Institute of Technology, Aurangabad, 431010 Maharashtra India
| | - Mokarram Hossain
- College of Engineering, Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, SA1 8EN UK
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Paramita Das
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh India
| |
Collapse
|
5
|
Arjmandi SK, Khademzadeh Yeganeh J, Zare Y, Rhee KY. Development of Kovacs model for electrical conductivity of carbon nanofiber-polymer systems. Sci Rep 2023; 13:7. [PMID: 36593230 PMCID: PMC9807566 DOI: 10.1038/s41598-022-26139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
This study develops a model for electrical conductivity of polymer carbon nanofiber (CNF) nanocomposites (PCNFs), which includes two steps. In the first step, Kovacs model is developed to consider the CNF, interphase and tunneling regions as dissimilar zones in the system. In the second step, simple equations are expressed to estimate the resistances of interphase and tunnels, the volume fraction of CNF and percolation onset. Although some earlier models were proposed to predict the electrical conductivity of PCNFs, developing of Kovacs model causes a better understanding of the effects of main factors on the nanocomposite conductivity. The developed model is supported by logical influences of all factors on the conductivity and by experimented conductivity of several samples. The calculations show good accordance to the experimented data and all factors rationally manage the conductivity of PCNFs. The highest conductivity of PCNF is gained as 0.019 S/m at the lowest ranges of polymer tunnel resistivity (ρ = 500 Ω m) and tunneling distance (d = 2 nm), whereas the highest levels of these factors (ρ > 3000 Ω m and d > 6 nm) cannot cause a conductive sample. Also, high CNF volume fraction, poor waviness, long and thin CNF, low "k", thick interphase, high CNF conduction, high percentage of percolated CNFs, low percolation onset and high interphase conductivity cause an outstanding conductivity in PCNF.
Collapse
Affiliation(s)
- Sajad Khalil Arjmandi
- grid.459900.1Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, P.O. Box: 37195-1519, Qom, Iran
| | - Jafar Khademzadeh Yeganeh
- grid.459900.1Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, P.O. Box: 37195-1519, Qom, Iran
| | - Yasser Zare
- grid.417689.5Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Kyong Yop Rhee
- grid.289247.20000 0001 2171 7818Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
6
|
High conductivity Sepia melanin ink films for environmentally benign printed electronics. Proc Natl Acad Sci U S A 2022; 119:e2200058119. [PMID: 35914170 PMCID: PMC9371694 DOI: 10.1073/pnas.2200058119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Melanins (from the Greek μέλας, mélas, black) are bio-pigments ubiquitous in flora and fauna. Eumelanin is an insoluble brown-black type of melanin, found in vertebrates and invertebrates alike, among which Sepia (cuttlefish) is noteworthy. Sepia melanin is a type of bio-sourced eumelanin that can readily be extracted from the ink sac of cuttlefish. Eumelanin features broadband optical absorption, metal-binding affinity and antioxidative and radical-scavenging properties. It is a prototype of benign material for sustainable organic electronics technologies. Here, we report on an electronic conductivity as high as 10-3 S cm-1 in flexographically printed Sepia melanin films; such values for the conductivity are typical for well-established high-performance organic electronic polymers but quite uncommon for bio-sourced organic materials. Our studies show the potential of bio-sourced materials for emerging electronic technologies with low human- and eco-toxicity.
Collapse
|
7
|
Woraphutthaporn S, Pattananuwat P, Hayichelaeh C, Kobayashi T, Boonkerd K. Enhancing the properties of graphene oxide/natural rubber nanocomposite‐based strain sensor modified by amino‐functionalized silanes. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sarinya Woraphutthaporn
- Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
- Green Materials for Industrial Application Research Unit, Faculty of Science Chulalongkorn University Bangkok Thailand
- Program in Petrochemistry and Polymer Science, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Prasit Pattananuwat
- Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Chesidi Hayichelaeh
- Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Takaomi Kobayashi
- Department of Materials Science and Technology Nagaoka University of Technology Niigata Japan
| | - Kanoktip Boonkerd
- Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
- Green Materials for Industrial Application Research Unit, Faculty of Science Chulalongkorn University Bangkok Thailand
- Program in Petrochemistry and Polymer Science, Faculty of Science Chulalongkorn University Bangkok Thailand
| |
Collapse
|
8
|
Robinson JG, Gonawan FN, Harun Kamaruddin A. Optimization of Binary Polymer Concentration for Dispersion of Multiwalled Carbon Nanotubes in Aqueous Solution. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jackson Genza Robinson
- Universiti Sains Malaysia School of Chemical Engineering, Engineering Campus 14300 Seri Ampangan Nibong Tebal Pulau Pinang Malaysia
- Adamawa State College of Education Chemistry Department, School of Sciences PM B 223, Yola Hong Adamawa State Nigeria
| | - Fadzil Noor Gonawan
- Universiti Sains Malaysia School of Chemical Engineering, Engineering Campus 14300 Seri Ampangan Nibong Tebal Pulau Pinang Malaysia
| | - Azlina Harun Kamaruddin
- Universiti Sains Malaysia School of Chemical Engineering, Engineering Campus 14300 Seri Ampangan Nibong Tebal Pulau Pinang Malaysia
| |
Collapse
|
9
|
Modeling of the Electrotransport Process in PP-Based and PLA-Based Composite Fibers Filled with Carbon Nanofibers. Polymers (Basel) 2022; 14:polym14122362. [PMID: 35745938 PMCID: PMC9229486 DOI: 10.3390/polym14122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Polypropylene and polylactide-based composite fibers have been produced by a melt technology. Long vapor-grown carbon fibers (CNFs) have been used as electrical conductivity fillers. It is clearly shown by experimental methods that the CNFs are evenly distributed in the polymer matrix, orienting themselves along the direction of fiber extrusion and retaining their initial dimensions. It is shown that for composites fibers based on crystallizing (polypropylene) and amorphous (polylactide acid) polymer matrix, the dependence of electrical resistance on the filler concentration is percolation character and can be described as a double Boltzmann function. Four sections are identified on the dependences of the electrical resistance on the filler concentration for composite fibers, and the reasons for this character of this dependence on the formation of electrically conductive circuits are analyzed. Investigated in this work are the PP-based and PLA-based composites filled with carbon nanofibers that can be used as antistatic, shielding materials, or as sensors.
Collapse
|
10
|
Fabrication and Model Characterization of the Electrical Conductivity of PVA/PPy/rGO Nanocomposite. Molecules 2022; 27:molecules27123696. [PMID: 35744818 PMCID: PMC9230829 DOI: 10.3390/molecules27123696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Owing to the numerous advantages of graphene-based polymer nanocomposite, this study is focused on the fabrication of the hybrid of polyvinyl alcohol (PVA), polypyrrole (PPy), and reduced graphene-oxide. The study primarily carried out the experimentation and the mathematical analysis of the electrical conductivity of PVA/PPy/rGO nanocomposite. The preparation method involves solvent/drying blending method. Scanning electron microscopy was used to observe the morphology of the nanocomposite. The electrical conductivity of the fabricated PVA/PPy/rGO nanocomposite was investigated by varying the content of PPy/rGO on PVA. From the result obtained, it was observed that at about 0.4 (wt%) of the filler content, the nanocomposite experienced continuous conduction. In addition, Ondracek, Dalmas s-shape, dose–response, and Gaussian fitting models were engaged for the analysis of the electrical transport property of the nanocomposite. The models were validated by comparing their predictions with the experimental measurements. The results obtained showed consistency with the experimental data. Moreover, this study confirmed that the electrical conductivity of polymer-composite largely depends on the weight fraction of fillers. By considering the flexibility, simplicity, and versatility of the studied models, this study suggests their deployment for the optimal characterization/simulation tools for the prediction of the electrical conductivity of polymer-composites.
Collapse
|
11
|
Galhardo Pimenta Tienne L, Tommasini Vieira Ramos FJH, Fátima Vieira Marques M, Santos Aguilera L, Silva Figueiredo AB. Thermal, Magnetic and Electrical Properties of PMMA Nanocomposites with Manganese and Zinc Ferrite Nanoparticles and Their Functionalization. ChemistrySelect 2022. [DOI: 10.1002/slct.202104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucas Galhardo Pimenta Tienne
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro (IMA/UFRJ), Centro de Tecnologia, Bloco J, Lab. J-122, CEP 21945-970, Ilha do Fundão Avenida Horácio Macedo 2030 Rio de Janeiro RJ Brazil
| | - Flavio James Humberto Tommasini Vieira Ramos
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro (IMA/UFRJ), Centro de Tecnologia, Bloco J, Lab. J-122, CEP 21945-970, Ilha do Fundão Avenida Horácio Macedo 2030 Rio de Janeiro RJ Brazil
| | - Maria Fátima Vieira Marques
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro (IMA/UFRJ), Centro de Tecnologia, Bloco J, Lab. J-122, CEP 21945-970, Ilha do Fundão Avenida Horácio Macedo 2030 Rio de Janeiro RJ Brazil
| | - Letícia Santos Aguilera
- Universidade do Estado do Rio de Janeiro, NanoFab Rua Fonseca Teles, 121. CEP 20940-903, São Cristóvão Rio de Janeiro Brazil
| | - André Ben‐Hur Silva Figueiredo
- Military Institute of Engineering – IME Department of Materials Science Praça General Tibúrcio, 80, CEP 22290-270, Urca Rio de Janeiro Brazil
| |
Collapse
|
12
|
Zhang R, Örtegren J, Hummelgård M, Olsen M, Andersson H, Olin H. A review of the advances in composites/nanocomposites for triboelectric nanogenerators. NANOTECHNOLOGY 2022; 33:212003. [PMID: 35030545 DOI: 10.1088/1361-6528/ac4b7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Material development is essential when studying triboelectric nanogenerators (TENGs). This importance is because the performance of TENGs is highly dependent on the properties of the utilized triboelectric materials. To obtain more specific properties, composites have been developed that combine the features of their components. According to Google Scholar, 55% of published papers related to triboelectric nanogenerators have utilized or mentioned composites. This number is 34.5% if one searches with the keyword nanocomposites instead of composites. The importance of composites is because they can exhibit new dielectric properties, better mechanical strength, enhanced charge affinities, etc. Therefore, the development of new composites has great importance in TENG studies. In this paper, we review the production of nanocomposites, the types of nanocomposites, and their application in TENG studies. This review gives an overview of how nanocomposites boost the performance of TENGs and provides guidance for future studies.
Collapse
Affiliation(s)
- Renyun Zhang
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Jonas Örtegren
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Magnus Hummelgård
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Martin Olsen
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Henrik Andersson
- Department of Electronics Design, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Håkan Olin
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| |
Collapse
|
13
|
Yoo J, Kim DY, Kim H, Hur ON, Park SH. Comparison of Pressure Sensing Properties of Carbon Nanotubes and Carbon Black Polymer Composites. MATERIALS 2022; 15:ma15031213. [PMID: 35161157 PMCID: PMC8838471 DOI: 10.3390/ma15031213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022]
Abstract
Polymer composites containing conductive fillers that utilize the piezoresistive effect can be employed in flexible pressure sensors. Depending on the filler used, different characteristics of a pressure sensor such as repeatability, sensitivity, and hysteresis can be determined. To confirm the variation of the pressure sensing tendency in accordance with the dimensions of the filler, carbon black (CB) and carbon nanotubes (CNTs) were used as representative 0-dimension and 1-dimension conductive fillers, respectively. The piezoresistive effect was exploited to analyze the process of resistance change according to pressure using CB/PDMS (polydimethylsiloxane) and CNT/PDMS composites. The electrical characteristics observed for each filler were confirmed to be in accordance with its content. The pressure sensitivity of each composite was optimized, and the pressure-sensing mechanism that explains the difference in sensitivity is presented. Through repeated compression experiments, the hysteresis and repeatability of the pressure-sensing properties were examined.
Collapse
|
14
|
Rajamanickam S, Mohammad SM, Hassan Z, Omar AF, Muhammad A. Investigations into Ag nanoparticles–carbon–poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) composite: morphological, structural, optical, and electrical characterization. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Highly sensitive self-healable strain biosensors based on robust transparent conductive nanocellulose nanocomposites: Relationship between percolated network and sensing mechanism. Biosens Bioelectron 2021; 191:113467. [PMID: 34218176 DOI: 10.1016/j.bios.2021.113467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
The conventional skin sensor detection of human physiological signals can be an effective method for disease diagnosis and health monitoring, but the poor biocompatibility, low sensitivity and complex design largely limit their applications. Developing natural nanofiller-reinforced composites as strain biosensors is an appealing solution to reduce environmental impacts and overcome technical bottleneck. Herein, a versatile nature skin-inspired composite film as flexible strain biosensor was developed based on cellulose nanocrystals-polyaniline (CNC-PANI) composites by utilizing their percolated conductive network in polyvinyl alcohol (PVA) matrix. The composite electronic skin showed robust mechanical strength (50.62 MPa) and high sensitivity (Gauge Factor = 11.467) with easy water-induced self-healing abilities. Moreover, we investigated the functioning mechanism of percolated network and the sensory behavior determined by CNC nanocomposite alignment. The percolation threshold of CNC-polyaniline (PANI) was determined at 4.278% and 5% CNC-PANI composite film shows the best overall sensing property. It was also discovered that the sensitivity of this type of conductive-filler electronic skin can be divided into two separate regions at different strain range due to its percolated network. With films prepared by dry casting and dip coating, the alignment of CNC-PANI also contributes to this unique change in electrical property. Generally, our results demonstrated the mechanism and tunability of conductive nanofiller-based composite strain biosensors as a potential alternative to commercial synthetic sensors.
Collapse
|
17
|
Changes in Electrical Conductance of Polymer Composites Melts Due to Carbon Nanofiller Particles Migration. Polymers (Basel) 2021; 13:polym13071030. [PMID: 33810308 PMCID: PMC8036904 DOI: 10.3390/polym13071030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 01/29/2023] Open
Abstract
In this work, the results of investigation of the effect of polymer composite melts electrical conductance increase with time are presented. The conductance time dependencies were obtained for composites based on polypropylene filled with carbon nanoparticles of different types. The dependencies were analyzed to demonstrate the possibility of correlation of the conductance kinetics with different composite parameters, such as the filler geometry. Additional studies were carried out, such as electron microscopy study, conductance measurements after consecutive surface layer removal, and composite melt conductance measurements using a three-electrode scheme. The results showed that the increased electrical conductance of the composite materials can be attributed to the formation of an enriched with the filler particles surface layer, which happens during the stay of the composite in a melt state. Analysis of the experimental data, along with the results of numerical modeling, allowed to suggest a possible filler distribution transformation scheme. The physical premises behind the investigated effect are discussed.
Collapse
|
18
|
Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021; 170:396-424. [PMID: 32987096 DOI: 10.1016/j.addr.2020.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Electroactive materials are employed at the interface of biology and electronics due to their advantageous intrinsic properties as soft organic electronics. We examine the most recent literature of electroactive material-based biosensors and their emerging role as theranostic devices for the delivery of therapeutic agents. We consider electroactive materials through the lens of smart drug delivery systems as materials that enable the release of therapeutic cargo in response to specific physiological and external stimuli and discuss the way these mechanisms are integrated into medical devices with examples of the latest advances. Studies that harness features unique to conductive polymers are emphasized; lastly, we highlight new perspectives and future research direction for this emerging technology and the challenges that remain to overcome.
Collapse
|
19
|
Kane S, Warnat S, Ryan C. Improvements in methods for measuring the volume conductivity of electrically conductive carbon powders. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
|
21
|
Liu Y, Wiorek A, Crespo GA, Cuartero M. Spectroelectrochemical Evidence of Interconnected Charge and Ion Transfer in Ultrathin Membranes Modulated by a Redox Conducting Polymer. Anal Chem 2020; 92:14085-14093. [PMID: 32972129 PMCID: PMC7584340 DOI: 10.1021/acs.analchem.0c03124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous publications have demonstrated the tuning of ion-transfer (IT) processes across ion-selective membranes (ISMs) with thicknesses in the nanometer order by modulating the oxidation state of a film of a conducting polymer, such as poly(3-octylthiophene) [POT], that is in back-side contact. Attempts on the theoretical description of this charge transfer (CT)-IT system have considered the Nernst equation for the CT, while there is no empirical evidence confirming this behavior. We present herein the first experimental characterization of the CT in POT films involved in different CT-IT systems. We take advantage of the absorbance change in the POT film while being oxidized, to monitor the CT linked to nonassisted and assisted ITs at the sample-ISM interface, from one to three ionophores, therefore promoting a change in the nature and number of the ITs. The CT is visualized as an independent sigmoid in different potential ranges according to the assigned IT. Herein, we have proposed a simple calculation of the empirical CT utilizing the mathematical Sigmoidal-Boltzmann model. The identification of the physical meaning of the mathematical definition of CT opens up new possibilities for the design of sensors with superior analytical features (mainly in terms of selectivity) and the calculation of apparent binding constants in the ISM.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Alexander Wiorek
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
22
|
Irzhak VI. Percolation Thresholds in Polymeric Nanocomposites. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420080129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Assessment of surface resistance reduction on polypyrrole-coated composite bipolar plates. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02207-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Abstract
AbstractWe address the following problem: given a set of complex images or a large database, the numerical and computational complexity and quality of approximation for neural network may drastically differ from one activation function to another. A general novel methodology, scaled polynomial constant unit activation function “SPOCU,” is introduced and shown to work satisfactorily on a variety of problems. Moreover, we show that SPOCU can overcome already introduced activation functions with good properties, e.g., SELU and ReLU, on generic problems. In order to explain the good properties of SPOCU, we provide several theoretical and practical motivations, including tissue growth model and memristive cellular nonlinear networks. We also provide estimation strategy for SPOCU parameters and its relation to generation of random type of Sierpinski carpet, related to the [pppq] model. One of the attractive properties of SPOCU is its genuine normalization of the output of layers. We illustrate SPOCU methodology on cancer discrimination, including mammary and prostate cancer and data from Wisconsin Diagnostic Breast Cancer dataset. Moreover, we compared SPOCU with SELU and ReLU on large dataset MNIST, which justifies usefulness of SPOCU by its very good performance.
Collapse
|
25
|
Recycling and Reusing Polyethylene Waste as Antistatic and Electromagnetic Interference Shielding Materials. INT J POLYM SCI 2020. [DOI: 10.1155/2020/6421470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work is to manage the waste product based on polyethylene (PE) films by recycling and reusing it as antistatic material for electronic packaging and electromagnetic interference (EMI) shielding material for protecting electronic equipment from interference of EM radiation. To achieve this, a conductive carbon black has been mixed with the PE waste at different weight percent values by ultrasonication via a solution mixing process. Mixing time for sonication was determined by ultraviolet-visible (UV-VIS) spectra. A differential scanning calorimetry (DSC) study showed that the low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) are immiscible in their blend composition. The tensile properties of PE have reduced substantially after reprocessing. However, the addition of carbon black has improved its strength up to a certain loading. The electrical percolation threshold values, calculated using the classical power law and sigmoidal Boltzmann model, were obtained at 3.5 and 2.8 wt% loading of carbon black, respectively. The conductivity result revealed that 1-2 wt% carbon-loaded composites can be used as antistatic material. The composites, having carbon loading above 4 wt%, can be effective materials for EMI shielding application. The 10 wt% carbon-loaded composite exhibits EMI SE value 33 dB which means there is approximately 99.93% protection of EM radiation at the sample thickness of 1.0 mm. Moreover, FTIR analysis, thermal stability, AC conductivity, dielectric properties, permeability, and current-voltage characteristics are also discussed in detail. There is a substantial increment in thermal stability, and dielectric properties are observed with the addition carbon black loading within the polymer matrix.
Collapse
|
26
|
Solazzo M, O'Brien FJ, Nicolosi V, Monaghan MG. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng 2019; 3:041501. [PMID: 31650097 PMCID: PMC6795503 DOI: 10.1063/1.5116579] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
The human heart possesses minimal regenerative potential, which can often lead to chronic heart failure following myocardial infarction. Despite the successes of assistive support devices and pharmacological therapies, only a whole heart transplantation can sufficiently address heart failure. Engineered scaffolds, implantable patches, and injectable hydrogels are among the most promising solutions to restore cardiac function and coax regeneration; however, current biomaterials have yet to achieve ideal tissue regeneration and adequate integration due a mismatch of material physicochemical properties. Conductive fillers such as graphene, carbon nanotubes, metallic nanoparticles, and MXenes and conjugated polymers such as polyaniline, polypyrrole, and poly(3,4-ethylendioxythiophene) can possibly achieve optimal electrical conductivities for cardiac applications with appropriate suitability for tissue engineering approaches. Many studies have focused on the use of these materials in multiple fields, with promising effects on the regeneration of electrically active biological tissues such as orthopedic, neural, and cardiac tissue. In this review, we critically discuss the role of heart electrophysiology and the rationale toward the use of electroconductive biomaterials for cardiac tissue engineering. We present the emerging applications of these smart materials to create supportive platforms and discuss the crucial role that electrical stimulation has been shown to exert in maturation of cardiac progenitor cells.
Collapse
|
27
|
Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. Int J Biol Macromol 2019; 141:636-662. [DOI: 10.1016/j.ijbiomac.2019.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
|
28
|
Chitosan/copper nanocomposites: Correlation between electrical and antibacterial properties. Colloids Surf B Biointerfaces 2019; 180:186-192. [DOI: 10.1016/j.colsurfb.2019.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
|
29
|
Folorunso O, Hamam Y, Sadiku R, Ray SS, Joseph AG. Parametric Analysis of Electrical Conductivity of Polymer-Composites. Polymers (Basel) 2019; 11:polym11081250. [PMID: 31362397 PMCID: PMC6722708 DOI: 10.3390/polym11081250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/02/2022] Open
Abstract
The problem associated with mixtures of fillers and polymers is that they result in mechanical degradation of the material (polymer) as the filler content increases. This problem will increase the weight of the material and manufacturing cost. For this reason, experimentation on the electrical conductivities of the polymer-composites (PCs) is not enough to research their electrical properties; models have to be adopted to solve the encountered challenges. Hitherto, several models by previous researchers have been developed and proposed, with each utilizing different design parameters. It is imperative to carry out analysis on these models so that the suitable one is identified. This paper indeed carried out a comprehensive parametric analysis on the existing electrical conductivity models for polymer composites. The analysis involves identification of the parameters that best predict the electrical conductivity of polymer composites for energy storage, viz: (batteries and capacitor), sensors, electronic device components, fuel cell electrodes, automotive, medical instrumentation, cathode scanners, solar cell, and military surveillance gadgets applications. The analysis showed that the existing models lack sufficient parametric ability to determine accurately the electrical conductivity of polymer-composites.
Collapse
Affiliation(s)
- Oladipo Folorunso
- French South African Institute of Technology (F'SATI)/Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa.
| | - Yskandar Hamam
- French South African Institute of Technology (F'SATI)/Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
- École Supérieure d'Ingénieurs en Électrotechnique et Électronique, Cité Descartes, 2 Boulevard Blaise Pascal, Noisy-le-Grand, 93160 Paris, France
| | - Rotimi Sadiku
- Institute of Nanoengineering Research (INER)/Department of Chemical, Metallurgy and Material Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Adekoya Gbolahan Joseph
- Institute of Nanoengineering Research (INER)/Department of Chemical, Metallurgy and Material Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
30
|
Akkoyun M, Akkoyun S. Blast furnace slag or fly ash filled rigid polyurethane composite foams: A comprehensive investigation. J Appl Polym Sci 2019. [DOI: 10.1002/app.47433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meral Akkoyun
- Bursa Technical University; Department of Fiber and Polymer Engineering, Mimar Sinan Campus; 16310 Bursa Turkey
| | - Serife Akkoyun
- Ankara Yildirim Beyazit University; Department of Metallurgical and Materials Engineering, Etlik Bati Campus; 06010 Ankara Turkey
| |
Collapse
|
31
|
Arroyo J, Ryan C. Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends. Polymers (Basel) 2018; 10:E1371. [PMID: 30961296 PMCID: PMC6401940 DOI: 10.3390/polym10121371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/03/2022] Open
Abstract
Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can potentially serve as a bio-derived graphitic carbon alternative for certain composite applications. In this work, we investigate a blended biopolymer system: poly(lactic acid) (PLA)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), and addition of carbon black (CB), a commonly used functional filler as a comparison for Kraft lignin-derived BioC. We present calculations and experimental results for phase-separation and nanofiller phase affinity in this system, indicating that the CB localizes in the PHBV phase of the immiscible PHBV:PLA blends. The addition of BioC led to a deleterious reaction with the biopolymers, as indicated by blend morphology, differential scanning calorimetry showing significant melting peak reduction for the PLA phase, and a reduction in melt viscosity. For the CB nanofilled composites, electrical conductivity and dynamic mechanical analysis supported the ability to use phase separation in these blends to tune the percolation of mechanical and electrical properties, with a minimum percolation threshold found for the 80:20 blends of 1.6 wt.% CB. At 2% BioC (approximately the percolation threshold for CB), the 80:20 BioC nanocomposites had a resistance of 3.43 × 10 8 Ω as compared to 2.99 × 10 8 Ω for the CB, indicating that BioC could potentially perform comparably to CB as a conductive nanofiller if the processing challenges can be overcome for higher BioC loadings.
Collapse
Affiliation(s)
- Jesse Arroyo
- Mechanical and Industrial Engineering Department, Montana State University, P. O. Box 173800, Bozeman, MT 59717, USA.
| | - Cecily Ryan
- Mechanical and Industrial Engineering Department, Montana State University, P. O. Box 173800, Bozeman, MT 59717, USA.
| |
Collapse
|
32
|
Hnida KE, Pilarczyk K, Knutelski M, Marzec M, Gajewska M, Kosonowski A, Chlebda D, Lis B, Przybylski M. Tuning of the Seebeck Coefficient and the Electrical and Thermal Conductivity of Hybrid Materials Based on Polypyrrole and Bismuth Nanowires. Chemphyschem 2018; 19:1617-1626. [PMID: 29633465 DOI: 10.1002/cphc.201800127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 11/06/2022]
Abstract
The growing demand for clean energy catalyzes the development of new devices capable of generating electricity from renewable energy resources. One of the possible approaches focuses on the use of thermoelectric materials (TE), which may utilize waste heat, water, and solar thermal energy to generate electrical power. An improvement of the performance of such devices may be achieved through the development of composites made of an organic matrix filled with nanostructured thermoelectric materials working in a synergetic way. The first step towards such designs requires a better understanding of the fundamental interactions between available materials. In this paper, this matter is investigated and the questions regarding the change of electrical and thermal properties of nanocomposites based on low-conductive polypyrrole enriched with bismuth nanowires of well-defined geometry and morphology is answered. It is clearly demonstrated that the electrical conductivity and the Seebeck coefficient may be tuned either simultaneously or separately within particular Bi NWs content ranges, and that both parameters may be increased at the same time.
Collapse
Affiliation(s)
- Katarzyna E Hnida
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Kacper Pilarczyk
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland.,Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Marcin Knutelski
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Artur Kosonowski
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Damian Chlebda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-060, Krakow, Poland
| | - Bartłomiej Lis
- Faculty of Energy and Fuels, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Marek Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland.,Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
33
|
Reversible chemiresistive sensing of ultra-low levels of elemental mercury vapor using thermally reduced graphene oxide. Mikrochim Acta 2018; 185:289. [PMID: 29744811 DOI: 10.1007/s00604-018-2831-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
A chemiresistor sensor for ultra-low levels of elemental mercury (Hg0) vapor is described. The sensor was prepared through thermal reduction of graphene oxide (GO) deposited on an interdigitated electrode using only low temperature annealing typically at 230 °C. The sensor responds to the presence of Hg0 vapor within <1 min and spontaneously recovers its baseline through flushing with a Hg0-free carrier gas. The sensor has a linear response in the range of 0.5 to 12.2 ppbv of Hg0 vapor and a detection limit of 0.10 ppbv. The amount of GO and annealing temperature affect the sensor response and were optimized. The sensor can find use in monitoring exposure of persons to Hg0 vapors, for which a threshold value of 6.1 ppbv has been set by the World Health Organization. Graphical abstract Schematic of an interdigitated electrode modified with a layer of thermally reduced graphene oxide. It can be used as a chemiresistive sensor for Hg0 vapor. The sensor displays a rapid and reversible response and has an ultralow detection limit of 0.10 ppbv.
Collapse
|