1
|
Muñoz R, León-Boigues L, López-Elvira E, Munuera C, Vázquez L, Mompeán F, Martín-Gago JÁ, Palacio I, García-Hernández M. Acrylates Polymerization on Covalent Plasma-Assisted Functionalized Graphene: A Route to Synthesize Hybrid Functional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46171-46180. [PMID: 37738025 PMCID: PMC10561134 DOI: 10.1021/acsami.3c07200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The modification of the surface properties of graphene with polymers provides a method for expanding its scope into new applications as a hybrid material. Unfortunately, the chemical inertness of graphene hinders the covalent functionalization required to build them up. Developing new strategies to enhance the graphene chemical activity for efficient and stable functionalization, while preserving its electronic properties, is a major challenge. We here devise a covalent functionalization method that is clean, reproducible, scalable, and technologically relevant for the synthesis of a large-scale, substrate-supported graphene-polymer hybrid material. In a first step, hydrogen-assisted plasma activation of p-aminophenol (p-AP) linker molecules produces their stable and covalent attachment to large-area graphene. Second, an in situ radical polymerization reaction of 2-hydroxyethyl acrylate (HEA) is carried out on the functionalized surface, leading to a graphene-polymer hybrid functional material. The functionalization with a hydrophilic and soft polymer modifies the hydrophobicity of graphene and might enhance its biocompatibility. We have characterized these hybrid materials by atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS) and Raman spectroscopy and studied their electrical response, confirming that the graphene/p-AP/PHEA architecture is anchored covalently by the sp3 hybridization and controlled polymerization reaction on graphene, retaining its suitable electronic properties. Among all the possibilities, we assess the proof of concept of this graphene-based hybrid platform as a humidity sensor. An enhanced sensitivity is obtained in comparison with pristine graphene and related materials. This functional nanoarchitecture and the two-step strategy open up future potential applications in sensors, biomaterials, or biotechnology fields.
Collapse
Affiliation(s)
- Roberto Muñoz
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Laia León-Boigues
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
- Universidad
Complutense de Madrid, Madrid E-28040, Spain
| | - Elena López-Elvira
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Carmen Munuera
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Luis Vázquez
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Federico Mompeán
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - José Ángel Martín-Gago
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Irene Palacio
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Mar García-Hernández
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| |
Collapse
|
2
|
Singh A, Muduli C, Senanayak SP, Goswami L. Graphite nanopowder incorporated xanthan gum scaffold for effective bone tissue regeneration purposes with improved biomineralization. Int J Biol Macromol 2023; 234:123724. [PMID: 36801298 DOI: 10.1016/j.ijbiomac.2023.123724] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
In the current work, biomaterial composed of Xanthan gum and Diethylene glycol dimethacrylate with impregnation of graphite nanopowder filler in their matrices was fabricated successfully for their potential usage in the engineering of bone defects. Various physicochemical properties associated with the biomaterial were characterized using FTIR, XRD, TGA, SEM etc. The biomaterial rheological studies imparted the better notable properties associated with the inclusion of graphite nanopowder. The biomaterial synthesized exhibited a controlled drug release. Adhesion and proliferation of different secondary cell lines do not generate ROS on the current biomaterial and thus show its biocompatibility and non-toxic nature. The synthesized biomaterial's osteogenic potential on SaOS-2 cells was supported by increased ALP activity, enhanced differentiation and biomineralization under osteoinductive circumstances. The current biomaterial demonstrates that in addition to the drug-delivery applications, it can also be a cost-effective substrate for cellular activities and has all the necessary properties to be considered as a promising alternative material suitable for repairing and restoring bone tissues. We propose that this biomaterial may have commercial importance in the biomedical field.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Chinmayee Muduli
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, India
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, School of Physical Science, National Institute of Science Education and Research, An OCC of HBNI, Jatni 752050, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India; School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India.
| |
Collapse
|
3
|
Tian Q, Koh YP, Orski SV, Simon SL. Dodecyl Methacrylate Polymerization under Nanoconfinement: Reactivity and Resulting Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qian Tian
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yung P. Koh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sara V. Orski
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sindee L. Simon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Weerathaworn S, Abetz V. Tailor‐made Vinylogous Urethane Vitrimers Based on Binary and Ternary Block and Random Copolymers: An Approach toward Reprocessable Materials. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siraphat Weerathaworn
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany
| | - Volker Abetz
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany
- Institute of Membrane Research Helmholtz‐Zentrum Hereon Max‐Planck‐Straße 1 21502 Geesthacht Germany
| |
Collapse
|
5
|
Chau Thuy Nguyen D, Dowling J, Ryan R, McLoughlin P, Fitzhenry L. Controlled release of naringenin from soft hydrogel contact lens: An investigation into lens critical properties and in vitro release. Int J Pharm 2022; 621:121793. [DOI: 10.1016/j.ijpharm.2022.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
|
6
|
Schumacher L, Siemsen K, Appiah C, Rajput S, Heitmann A, Selhuber-Unkel C, Staubitz A. A Co-Polymerizable Linker for the Covalent Attachment of Fibronectin Makes pHEMA Hydrogels Cell-Adhesive. Gels 2022; 8:258. [PMID: 35621556 PMCID: PMC9140594 DOI: 10.3390/gels8050258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Hydrogels are attractive biomaterials because their chemical and mechanical properties can be tailored to mimic those of biological tissues. However, many hydrogels do not allow cell or protein attachment. Therefore, they are post-synthetically functionalized by adding functional groups for protein binding, which then allows cell adhesion in cell culture substrates. However, the degree of functionalization and covalent binding is difficult to analyze in these cases. Moreover, the density of the functional groups and the homogeneity of their distribution is hard to control. This work introduces another strategy for the biofunctionalization of hydrogels: we synthesized a polymerizable linker that serves as a direct junction between the polymeric structure and cell adhesion proteins. This maleimide-containing, polymerizable bio-linker was copolymerized with non-functionalized monomers to produce a bioactive hydrogel based on poly(2-hydroxyethyl methacrylate) (pHEMA). Therefore, the attachment site was only controlled by the polymerization process and was thus uniformly distributed throughout the hydrogel. In this way, the bio-conjugation by a protein-binding thiol-maleimide Michael-type reaction was possible in the entire hydrogel matrix. This approach enabled a straightforward and highly effective biofunctionalization of pHEMA with the adhesion protein fibronectin. The bioactivity of the materials was demonstrated by the successful adhesion of fibroblast cells.
Collapse
Affiliation(s)
- Laura Schumacher
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Katharina Siemsen
- Biocompatible Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany;
| | - Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Sunil Rajput
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, INF 253, D-69120 Heidelberg, Germany;
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, INF 253, D-69120 Heidelberg, Germany;
- Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| |
Collapse
|
7
|
Tsagkalias IS, Achilias DS. Role of Functional Groups in the Monomer Molecule on the Radical Polymerization in the Presence of Graphene Oxide. Polymerization of Hydroxyethyl Acrylate under Isothermal and Non-Isothermal Conditions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020345. [PMID: 35056660 PMCID: PMC8781409 DOI: 10.3390/molecules27020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
Abstract
Functional groups in a monomer molecule usually play an important role during polymerization by enhancing or decreasing the reaction rate due to the possible formation of side bonds. The situation becomes more complicated when polymerization takes place in the presence of graphene oxide since it also includes functional groups in its surface. Aiming to explore the role of functional groups on polymerization rate, the in situ bulk radical polymerization of hydroxyethyl acrylate (HEA) in the presence or not of graphene oxide was investigated. Differential scanning calorimetry was used to continuously record the reaction rate under both isothermal and non-isothermal conditions. Simple kinetic models and isoconversional analysis were used to estimate the variation of the overall activation energy with the monomer conversion. It was found that during isothermal experiments, the formation of both inter- and intra-chain hydrogen bonds between the monomer and polymer molecules results in slower polymerization of neat HEA with higher overall activation energy compared to that estimated in the presence of GO. The presence of GO results in a dissociation of hydrogen bonds between monomer and polymer molecules and, thus, to higher reaction rates. Isoconversional methods employed during non-isothermal experiments revealed that the presence of GO results in higher overall activation energy due to the reaction of more functional groups on the surface of GO with the hydroxyl and carbonyl groups of the monomer and polymer molecules, together with the reaction of primary initiator radicals with the surface hydroxyl groups in GO.
Collapse
|
8
|
Tu W, Maksym PE, Kaminski K, Chat K, Adrjanowicz K. Free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA) supported by the high electric field. Polym Chem 2022. [DOI: 10.1039/d2py00320a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In macromolecular science, tunning basic polymer parameters, like molecular weight (Mn) or molecular weight distribution (dispersity, Đ), is an active research topic. Many prominent synthetic protocols concerning chemical modification of...
Collapse
|
9
|
Alamgir M, Nayak GC, Mallick A, Sahoo S. Effects of TiO2 and GO nanoparticles on the thermomechanical properties of bioactive poly-HEMA nanocomposites. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00948-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p(HEMA) Hydrogel. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are nosocomial infections, causing more than one million cases per year. CAUTIs cause serious health issues; in addition, the cost of replacement of the device constrains the employment of urological devices. Therefore, there is an urgent need to develop novel biomaterials for use in catheters. In this study, poly hydroxyethyl-methacrylate p(HEMA) and drugs-loaded p(HEMA) with ampicillin trihydrate (AMP), levofloxacin (LVX), and drug combinations were prepared using free radical polymerization. The characterization of the dried films included the determination of glass transition temperature (Tg), ultimate tensile strength, elongation percentage, and Young’s modulus. Formulation toxicity, antimicrobial activity, and biofilm-formation ability were tested. Decreases in Tg value, U.T.S., and Young’s modulus, and an increase in elongation percentage were observed in AMP-loaded p(HEMA). Different ratios of drug combinations increased the Tg values. The films exhibited a cell viability higher than 80% on HEK 293 cells. Antimicrobial activity increased when p(HEMA) was loaded with LVX or a combination of LVX and AMP. Biofilm-forming ability reduced after the addition of antimicrobial agents to the films. p(HEMA) impregnated with AMP, LVX, and drug combinations showed significantly increased antimicrobial activity and decreased biofilm-forming ability compared with p(HEMA), in addition to the effects on (HEMA) mechanical properties.
Collapse
|
11
|
León-Boigues L, Navarro R, Mijangos C. Free radical nanocopolymerization in AAO porous materials: Kinetic, copolymer composition and monomer reactivity ratios. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Self-Initiated Butyl Acrylate Polymerizations in Bulk and in Solution Monitored By In-Line Techniques. Polymers (Basel) 2021; 13:polym13122021. [PMID: 34205620 PMCID: PMC8233791 DOI: 10.3390/polym13122021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
High-temperature acrylate polymerizations are technically relevant, but yet not fully understood. In particular the mechanism and the kinetics of the thermal self-initiation is a topic of current research. To obtain more detailed information the conversion dependence of the polymerization rate, rbr, is determined via in-line DSC and FT-NIR spectroscopy for reactions in bulk and in solution at temperatures ranging from 80 to 160 °C. Solution polymerizations revealed that dioxane is associated with the highest rbr, while aromatic solvents result in the lowest values of rbr. Interestingly, rbr for polymerizations in solution with dioxane depends on the actual monomer concentration at a given time in the system, but is not depending on the initial monomer concentration. The overall rate of polymerization in bulk and in solution is well represented by an equation with three or four parameters, respectively, being estimated by multiple linear regression and the temperature as additional parameter.
Collapse
|
13
|
Khoo YS, Seah MQ, Lau WJ, Liang YY, Karaman M, Gürsoy M, Meng J, Gao H, Ismail AF. Environmentally friendly approach for the fabrication of polyamide thin film nanocomposite membrane with enhanced antifouling and antibacterial properties. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Jiang J, Shea G, Rastogi P, Kamperman T, Venner CH, Visser CW. Continuous High-Throughput Fabrication of Architected Micromaterials via In-Air Photopolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006336. [PMID: 33274554 PMCID: PMC11468713 DOI: 10.1002/adma.202006336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in optical coding, drug delivery, diagnostics, tissue engineering, shear-induced gelation, and functionally engineered rheology crucially depend on microparticles and microfibers with tunable shape, size, and composition. However, scalable manufacturing of the required complex micromaterials remains a long-standing challenge. Here in-air polymerization of liquid jets is demonstrated as a novel platform to produce microparticles and microfibers with tunable size, shape, and composition at high throughput (>100 mL h-1 per nozzle). The polymerization kinetics is quantitatively investigated and modeled as a function of the ink composition, the UV light intensity, and the velocity of the liquid jet, enabling engineering of complex micromaterials in jetting regimes. The size, morphology, and local chemistry of micromaterials are independently controlled, as highlighted by producing micromaterials using 5 different photopolymers as well as multi-material composites. Simultaneous optimization of these control parameters yields rapid fabrication of stimuli-responsive Janus fibers that function as soft actuators. Finally, in-air photopolymerization enables control over the curvature of printed droplets, as highlighted by high-throughput printing of microlenses with tunable focal distance. The combination of rapid processing and tunability in composition and architecture opens a new route toward applications of tailored micromaterials in soft matter, medicine, pharmacy, and optics.
Collapse
Affiliation(s)
- Jieke Jiang
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
| | - Gary Shea
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteEnschede7500AEThe Netherlands
| | - Prasansha Rastogi
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
| | - Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteEnschede7500AEThe Netherlands
- Division of Engineering in MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Cornelis H. Venner
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
| | - Claas Willem Visser
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
| |
Collapse
|
15
|
Khoo YS, Lau WJ, Liang YY, Karaman M, Gürsoy M, Ismail AF. A green approach to modify surface properties of polyamide thin film composite membrane for improved antifouling resistance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116976] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|
17
|
Luu TTH, Jia Z, Kanaev A, Museur L. Effect of Light Intensity on the Free-Radical Photopolymerization Kinetics of 2-Hydroxyethyl Methacrylate: Experiments and Simulations. J Phys Chem B 2020; 124:6857-6866. [PMID: 32649202 DOI: 10.1021/acs.jpcb.0c03140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of UV light intensity on the kinetics of free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA) triggered with the phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO) photoinitiator was investigated experimentally and theoretically. The temporal evolution of the conversion yield and polymerization rate was followed by Raman spectroscopy. The experimental data were treated with a kinetic model, which takes into account significant diffusion-controlled processes and termination pathways including bimolecular reaction and primary radical termination. This model showed very good agreement with the experiment in a large range of UV light intensities and shed light on the termination process. In particular, it was shown that the primary radical termination is dominant for relatively low light intensities below 1 mW/cm2, when the photoinitiator is weakly consumed during the polymerization process.
Collapse
Affiliation(s)
- T T H Luu
- Laboratoire de Physique des Lasers CNRS UMR 7538, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France
| | - Z Jia
- Laboratoire de Physique des Lasers CNRS UMR 7538, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France.,Laboratoire des Sciences des Procédés et des Matériaux CNRS UPR 3407, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France
| | - A Kanaev
- Laboratoire des Sciences des Procédés et des Matériaux CNRS UPR 3407, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France
| | - L Museur
- Laboratoire de Physique des Lasers CNRS UMR 7538, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France
| |
Collapse
|
18
|
Panpisut P, Toneluck A. Monomer conversion, dimensional stability, biaxial flexural strength, and fluoride release of resin-based restorative material containing alkaline fillers. Dent Mater J 2020; 39:608-615. [PMID: 32037385 DOI: 10.4012/dmj.2019-020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to assess monomer conversion, dimensional stability (mass and volume changes), biaxial flexural strength (BFS), and fluoride release of recently developed resin composites containing alkaline fillers (Cention N; CN) compared with resin-modified glass ionomer cements (RMGICs: Riva LC; RL and Fuji II LC; FL), and conventional composite (Z350). FL showed highest monomer conversion (88±2%) followed by RL (73±10%), CN (59±2%), and Z350 (50±2%). RL exhibited highest mass and volume increase (10.22±0.04 wt% and 19.4±0.2 vol%). CN exhibited higher BFS (180±20 MPa) than RMGICs but lower than Z350 (248±27 MPa). The highest cumulative fluoride release at 6 weeks was observed with RL (136±22 ppm) followed by CN (36±4 ppm) and FL (30±3 ppm). CN exhibited monomer conversion higher than the composite. CN also released fluoride in the range of that observed with RMGICs but with higher flexural strength.
Collapse
|
19
|
Tanasa E, Zaharia C, Hudita A, Radu IC, Costache M, Galateanu B. Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110714. [PMID: 32204026 DOI: 10.1016/j.msec.2020.110714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/17/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
This paper reports the impact of the magnetic field on 3T3-E1 preosteoblasts within silk-fibroin scaffolds decorated with magnetic nanoparticles. Scaffolds were prepared from silk fibroin and poly(2-hydroxyethyl methacrylate) template in which magnetite nanoparticles were embedded. The presence of the magnetite specific peaks within scaffolds compositions was evidenced by RAMAN analysis. Structural investigation was done by XRD analysis and morphological information including internal structure was obtained through SEM analysis. Geometrical evaluation (size and shape), crystalline structure of magnetic nanoparticles and the morphology of the silk fibroin scaffolds were investigated by HR-TEM. Magnetic nanoparticles were distributed within scaffolds structure. Biomineralization of hydroxyapatite on silk fibroin scaffolds with and without magnetic nanoparticles was investigated by an alternate soaking process. SEM images showed that the magnetic scaffolds were covered in an almost continuously film, which has a phase with nanostructured characteristics. This phase, which has as main components Ca and P, is made of lamellar formations. The design of an original magnetic 3D cell culture setup allowed us to observe cellular modifications under the exposure to magnetic field in the presence of magnetic silk fibroin biomaterials. The cellular proliferation potential of 3T3-E1 cell line was found increased under the magnetic field, especially in the presence of the magnetite nanoparticles. In addition, we showed that the low static magnetic field positively impacts on the osteogenic differentiation potential of the cells inside the biomimetic magnetic scaffolds.
Collapse
Affiliation(s)
- Eugenia Tanasa
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, Romania
| | - Catalin Zaharia
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, Romania; Advanced Polymer Materials Group, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, Romania.
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, Romania
| | - Ionut-Cristian Radu
- Advanced Polymer Materials Group, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, Romania.
| |
Collapse
|
20
|
Banetta L, Storti G, Hoggard G, Simpson G, Zaccone A. Predictive model of polymer reaction kinetics and coagulation behavior in seeded emulsion co- and ter-polymerizations. Polym Chem 2020. [DOI: 10.1039/d0py01138j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mathematical model to describe the emulsion polymerization kinetics of co- and ter-polymerizations is developed.
Collapse
Affiliation(s)
- Luca Banetta
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Giuseppe Storti
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “Giulio Natta”
- Politecnico di Milano
- Italy
| | | | | | - Alessio Zaccone
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
- Dipartimento di Fisica “A. Pontremoli”
| |
Collapse
|
21
|
Siddiqui MN, Achilias DS, Redhwi HH. Effect of the side ethylene glycol and hydroxyl groups on the polymerization kinetics of oligo(ethylene glycol methacrylates). An experimental and modeling investigation. Polym Chem 2020. [DOI: 10.1039/d0py00498g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polymerization of oligo(ethylene glycol) methyl ether methacrylate (POEGMMA300) and oligo(ethylene glycol) hydroxyethyl methacrylate (POEGHEMA).
Collapse
Affiliation(s)
| | - Dimitris S. Achilias
- Laboratory of Polymer and Dyes Chemistry and Technology
- Department of Chemistry
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | - Halim Hamid Redhwi
- Chemical Engineering Department
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| |
Collapse
|
22
|
Bakan B, Kayhan CT, Koksal Karayildirim C, Dagdeviren M, Gulcemal S, Yildirim Y, Akgol S, Karabay Yavasoglu NU. Synthesis, characterization, toxicity and in vivo imaging of lysine graft polymeric nanoparticles. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1901-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Lin C, Lü T, Qi D, Cao Z, Sun Y, Wang Y. Effects of Surface Groups on SiO 2 Nanoparticles on in Situ Solution Polymerization: Kinetics and Mechanism. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Lin
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Lü
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dongming Qi
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihai Cao
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yiting Wang
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
24
|
Saleh NS, Ostad Movahed S, Attarbashi F. Study on the anti-biofouling effects of the grafted polyamide 6 fibers by several vinyl chemicals. J Appl Polym Sci 2018. [DOI: 10.1002/app.46760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- N. S. Saleh
- Department of Chemistry, Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - S. Ostad Movahed
- Department of Chemistry, Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - F. Attarbashi
- Department of Chemistry, Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
25
|
Roose P, Van den Bergen H, Houben A, Bontinck D, Van Vlierberghe S. A Semiempirical Scaling Model for the Solid- and Liquid-State Photopolymerization Kinetics of Semicrystalline Acrylated Oligomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrice Roose
- allnex Belgium, Anderlechtstraat 33, Drogenbos B-1620, Belgium
| | | | - Annemie Houben
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, Ghent B-9000, Belgium
| | - Dirk Bontinck
- allnex Belgium, Anderlechtstraat 33, Drogenbos B-1620, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, Ghent B-9000, Belgium
| |
Collapse
|
26
|
Victoria-Valenzuela D, Herrera-Ordonez J, Arcos-Casarrubias A, Vazquez-Torres H. Kinetics of Bulk Free-Radical Polymerization of Butyl Methacrylate Isomers Studied by Reaction Calorimetry. MACROMOL REACT ENG 2017. [DOI: 10.1002/mren.201700046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David Victoria-Valenzuela
- Centro de Física Aplicada y Tecnología Avanzada (CFATA); UNAM Campus Juriquilla; Blvd. Juriquilla 3001, Juriquilla 76230 Querétaro Qro. México
| | - Jorge Herrera-Ordonez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA); UNAM Campus Juriquilla; Blvd. Juriquilla 3001, Juriquilla 76230 Querétaro Qro. México
| | - Antonio Arcos-Casarrubias
- División de Ingeniería Química y Bioquímica; Tecnológico de Estudios Superiores de Ecatepec; Av. Tecnológico s/n esq. Av. Hank González, Col. Valle de Anáhuac Ecatepec Edo. de México C.P. 55210 México
| | - Humberto Vazquez-Torres
- Departamento de Física; Universidad Autónoma Metropolitana -Iztapalapa Av. San Rafael Atlixco 186; Col. Vicentina Ciudad de México 09340 México
| |
Collapse
|
27
|
|