1
|
Prazeres PHDM, Ferreira H, Costa PAC, da Silva W, Alves MT, Padilla M, Thatte A, Santos AK, Lobo AO, Sabino A, Del Puerto HL, Mitchell MJ, Guimaraes PPG. Delivery of Plasmid DNA by Ionizable Lipid Nanoparticles to Induce CAR Expression in T Cells. Int J Nanomedicine 2023; 18:5891-5904. [PMID: 37873551 PMCID: PMC10590593 DOI: 10.2147/ijn.s424723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Introduction Chimeric antigen receptor (CAR) cell therapy represents a hallmark in cancer immunotherapy, with significant clinical results in the treatment of hematological tumors. However, current approved methods to engineer T cells to express CAR use viral vectors, which are integrative and have been associated with severe adverse effects due to constitutive expression of CAR. In this context, non-viral vectors such as ionizable lipid nanoparticles (LNPs) arise as an alternative to engineer CAR T cells with transient expression of CAR. Methods Here, we formulated a mini-library of LNPs to deliver pDNA to T cells by varying the molar ratios of excipient lipids in each formulation. LNPs were characterized and screened in vitro using a T cell line (Jurkat). The optimized formulation was used ex vivo to engineer T cells derived from human peripheral blood mononuclear cells (PBMCs) for the expression of an anti-CD19 CAR (CAR-CD19BBz). The effectiveness of these CAR T cells was assessed in vitro against Raji (CD19+) cells. Results LNPs formulated with different molar ratios of excipient lipids efficiently delivered pDNA to Jurkat cells with low cytotoxicity compared to conventional transfection methods, such as electroporation and lipofectamine. We show that CAR-CD19BBz expression in T cells was transient after transfection with LNPs. Jurkat cells transfected with our top-performing LNPs underwent activation when exposed to CD19+ target cells. Using our top-performing LNP-9-CAR, we were able to engineer human primary T cells to express CAR-CD19BBz, which elicited significant specific killing of CD19+ target cells in vitro. Conclusion Collectively, our results show that LNP-mediated delivery of pDNA is a suitable method to engineer human T cells to express CAR, which holds promise for improving the production methods and broader application of this therapy in the future.
Collapse
Affiliation(s)
- Pedro Henrique Dias Moura Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heloísa Ferreira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Walison da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco Túllio Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marshall Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajay Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Anderson Kenedy Santos
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Adriano Sabino
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Helen Lima Del Puerto
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Pedro Pires Goulart Guimaraes
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
3
|
Zeng Q, Liu Z, Niu T, He C, Qu Y, Qian Z. Application of nanotechnology in CAR-T-cell immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
5
|
Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Sci Rep 2021; 11:21407. [PMID: 34725429 PMCID: PMC8560772 DOI: 10.1038/s41598-021-00893-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Messenger RNA (mRNA) delivery provides gene therapy with the potential to achieve transient therapeutic efficacy without risk of insertional mutagenesis. Amongst other applications, mRNA can be employed as a platform to deliver gene editing molecules, to achieve protein expression as an alternative to enzyme replacement therapies, and to express chimeric antigen receptors (CARs) on immune cells for the treatment of cancer. We designed a novel microfluidic device that allows for efficient mRNA delivery via volume exchange for convective transfection (VECT). In the device, cells flow through a ridged channel that enforces a series of ultra-fast and large intensity deformations able to transiently open pores and induce convective transport of mRNA into the cell. Here, we describe efficient delivery of mRNA into T cells, natural killer (NK) cells and hematopoietic stem and progenitor cells (HSPCs), three human primary cell types widely used for ex vivo gene therapy applications. Results demonstrate that the device can operate at a wide range of cell and payload concentrations and that ultra-fast compressions do not have a negative impact on T cell function, making this a novel and competitive platform for the development of ex vivo mRNA-based gene therapies and other cell products engineered with mRNA.
Collapse
|
6
|
Diaz IL, Jérôme V, Freitag R, Perez LD. Development of poly(ethyleneimine) grafted amphiphilic copolymers: Evaluation of their cytotoxicity and ability to complex DNA. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211053925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(ethyleneimine) (PEI) is one of the most widely used cationic polymers for gene delivery. The high molecular weight polymer, which is commercially available, is highly efficient but also very cytotoxic. The reduction in charge density by using nonlinear architectures based on low molecular weight (LMW) PEI is a promising approach to produce safer DNA-vectors. Herein, a group of cationic graft copolymers with different composition containing a hydrophobic biocompatible backbone and LMW linear PEI (lPEI) grafts obtained by ring opening polymerization and click chemistry was studied. The self-assembly and DNA complexation behavior of these materials was analyzed by the gel retardation assay, zeta potential measurements, and dynamic light scattering. The copolymers formed positively charged particles in water with average sizes between 270 and 377 nm. After they were added to DNA in serum-free medium, these particles acquired negative/near-neutral charges and increased in size depending on the N/P ratio. All copolymers showed reduced cytotoxicity compared to the 25 kDa lPEI used as reference, but the transfection efficiency was reduced. This result suggested that the cationic segments were too small to fully condense the DNA and promote cellular uptake, even with the use of several grafts and the introduction of hydrophobic domains. The trends found in this research showed that a higher degree of hydrophobicity and a higher grafting density can enhance the interaction between the copolymers and DNA. These trends could direct further structural modifications in the search for effective and safe vectors based on this polycation.
Collapse
Affiliation(s)
- Ivonne L Diaz
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - León D Perez
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| |
Collapse
|
7
|
Kamalzare S, Iranpur Mobarakeh V, Mirzazadeh Tekie FS, Hajiramezanali M, Riazi-Rad F, Yoosefi S, Normohammadi Z, Irani S, Tavakoli M, Rahimi P, Atyabi F. Development of a T Cell-targeted siRNA Delivery System Against HIV-1 Using Modified Superparamagnetic Iron Oxide Nanoparticles: An In Vitro Study. J Pharm Sci 2021; 111:1463-1469. [PMID: 34673092 DOI: 10.1016/j.xphs.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
In spite of the promising properties of small interfering RNAs (siRNAs) in the treatment of infectious diseases, safe and efficient siRNA delivery to target cells is still a challenge. In this research, an effective siRNA delivery approach (against HIV-1) has been reported using targeted modified superparamagnetic iron oxide nanoparticles (SPIONs). Trimethyl chitosan-coated SPION (TMC-SPION) containing siRNA was synthesized and chemically conjugated to a CD4-specific monoclonal antibody (as a targeting moiety). The prepared nanoparticles exhibited a high siRNA loading efficiency with a diameter of about 85 nm and a zeta potential of +28 mV. The results of the cell viability assay revealed the low cytotoxicity of the optimized nanoparticles. The cellular delivery of the targeted nanoparticles (into T cells) and the gene silencing efficiency of the nanoparticles (containing anti-nef siRNA) were dramatically improved compared to those of nontargeted nanoparticles. In conclusion, this study offers a promising targeted delivery platform to induce gene silencing in target cells. Our approach may find potential use in the design of effective vehicles for many therapeutic applications, particularly for HIV treatment.
Collapse
Affiliation(s)
- Sara Kamalzare
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maliheh Hajiramezanali
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Riazi-Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Normohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamadreza Tavakoli
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Keim D, Gollner K, Gollner U, Jérôme V, Freitag R. Generation of Recombinant Primary Human B Lymphocytes Using Non-Viral Vectors. Int J Mol Sci 2021; 22:8239. [PMID: 34361005 PMCID: PMC8347318 DOI: 10.3390/ijms22158239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Although the development of gene delivery systems based on non-viral vectors is advancing, it remains a challenge to deliver plasmid DNA into human blood cells. The current "gold standard", namely linear polyethyleneimine (l-PEI 25 kDa), in particular, is unable to produce transgene expression levels >5% in primary human B lymphocytes. Here, it is demonstrated that a well-defined 24-armed poly(2-dimethylamino) ethyl methacrylate (PDMAEMA, 755 kDa) nano-star is able to reproducibly elicit high transgene expression (40%) at sufficient residual viability (69%) in primary human B cells derived from tonsillar tissue. Moreover, our results indicate that the length of the mitogenic stimulation prior to transfection is an important parameter that must be established during the development of the transfection protocol. In our hands, four days of stimulation with rhCD40L post-thawing led to the best transfection results in terms of TE and cell survival. Most importantly, our data argue for an impact of the B cell subsets on the transfection outcomes, underlining that the complexity and heterogeneity of a given B cell population pre- and post-transfection is a critical parameter to consider in the multiparametric approach required for the implementation of the transfection protocol.
Collapse
Affiliation(s)
- Daniel Keim
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany; (D.K.); (V.J.)
| | - Katrin Gollner
- Praxis am Schießgraben, Schießgraben 21, 95326 Kulmbach, Germany; (K.G.); (U.G.)
| | - Ulrich Gollner
- Praxis am Schießgraben, Schießgraben 21, 95326 Kulmbach, Germany; (K.G.); (U.G.)
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany; (D.K.); (V.J.)
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany; (D.K.); (V.J.)
| |
Collapse
|
9
|
Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol Adv 2021; 49:107760. [PMID: 33932532 DOI: 10.1016/j.biotechadv.2021.107760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Genetically engineered T cells have sparked interest in advanced cancer treatment, reaching a milestone in 2017 with two FDA-approvals for CD19-directed chimeric antigen receptor (CAR) T cell therapeutics. It is becoming clear that the next generation of CAR T cell therapies will demand more complex engineering strategies and combinations thereof, including the use of revolutionary gene editing approaches. To date, manufacturing of CAR T cells mostly relies on γ-retroviral or lentiviral vectors, but their use is associated with several drawbacks, including safety issues, high manufacturing cost and vector capacity constraints. Non-viral approaches, including membrane permeabilization and carrier-based techniques, have therefore gained a lot of interest to replace viral transductions in the manufacturing of T cell therapeutics. This review provides an in-depth discussion on the avid search for alternatives to viral vectors, discusses key considerations for T cell engineering technologies, and provides an overview of the emerging spectrum of non-viral transfection technologies for T cells. Strengths and weaknesses of each technology will be discussed in relation to T cell engineering. Altogether, this work emphasizes the potential of non-viral transfection approaches to advance the next-generation of genetically engineered T cells.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: a technical review. PeerJ 2021; 9:e11165. [PMID: 33976969 PMCID: PMC8067914 DOI: 10.7717/peerj.11165] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
11
|
Yang K, Zhou Y, Roberts BL, Nie X, Tang W. Evaluation of the binding affinity of E3 ubiquitin ligase ligands by cellular target engagement and in-cell ELISA assay. STAR Protoc 2021; 2:100288. [PMID: 33532735 PMCID: PMC7829257 DOI: 10.1016/j.xpro.2020.100288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The discovery of potent cell-permeable E3 ubiquitin ligase ligands can significantly facilitate the development of proteolysis targeting chimeras (PROTACs). Here, we present a protocol to determine the binding affinity of ligands toward CRBN E3 ubiquitin ligase, using a cellular target engagement mechanism and in-cell ELISA assay. This protocol is easy to establish, with relatively low cost and rapid time frame. It can also be modified to measure the level of other proteins or determine the ligand affinity toward other E3s. For complete details on the use and execution of this protocol, please refer to Yang et al. (2020).
Collapse
Affiliation(s)
- Ka Yang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yaxian Zhou
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brett L Roberts
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xueqing Nie
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
12
|
Richter F, Mapfumo P, Martin L, Solomun JI, Hausig F, Frietsch JJ, Ernst T, Hoeppener S, Brendel JC, Traeger A. Improved gene delivery to K-562 leukemia cells by lipoic acid modified block copolymer micelles. J Nanobiotechnology 2021; 19:70. [PMID: 33676500 PMCID: PMC7936509 DOI: 10.1186/s12951-021-00801-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
Although there has been substantial progress in the research field of gene delivery, there are some challenges remaining, e.g. there are still cell types such as primary cells and suspension cells (immune cells) known to be difficult to transfect. Cationic polymers have gained increasing attention due to their ability to bind, condense and mask genetic material, being amenable to scale up and highly variable in their composition. In addition, they can be combined with further monomers exhibiting desired biological and chemical properties, such as antioxidative, pH- and redox-responsive or biocompatible features. By introduction of hydrophobic monomers, in particular as block copolymers, cationic micelles can be formed possessing an improved chance of transfection in otherwise challenging cells. In this study, the antioxidant biomolecule lipoic acid, which can also be used as crosslinker, was incorporated into the hydrophobic block of a diblock copolymer, poly{[2-(dimethylamino)ethyl methacrylate]101-b-[n-(butyl methacrylate)124-co-(lipoic acid methacrylate)22]} (P(DMAEMA101-b-[nBMA124-co-LAMA22])), synthesized by RAFT polymerization and assembled into micelles (LAMA-mic). These micelles were investigated regarding their pDNA binding, cytotoxicity mechanisms and transfection efficiency in K-562 and HEK293T cells, the former representing a difficult to transfect, suspension leukemia cell line. The LAMA-mic exhibited low cytotoxicity at applied concentrations but demonstrated superior transfection efficiency in HEK293T and especially K-562 cells. In-depth studies on the transfection mechanism revealed that transfection efficiency in K-562 cells does not depend on the specific oncogenic fusion gene BCR-ABL alone. It is independent of the cellular uptake of polymer-pDNA complexes but correlates with the endosomal escape of the LAMA-mic. A comparison of the transfection efficiency of the LAMA-mic with structurally comparable micelles without lipoic acid showed that lipoic acid is not solely responsible for the superior transfection efficiency of the LAMA-mic. More likely, a synergistic effect of the antioxidative lipoic acid and the micellar architecture was identified. Therefore, the incorporation of lipoic acid into the core of hydrophobic-cationic micelles represents a promising tailor-made transfer strategy, which can potentially be beneficial for other difficult to transfect cell types.
Collapse
Affiliation(s)
- Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Jochen J Frietsch
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
13
|
Diaz Ariza IL, Jérôme V, Pérez Pérez LD, Freitag R. Amphiphilic Graft Copolymers Capable of Mixed-Mode Interaction as Alternative Nonviral Transfection Agents. ACS APPLIED BIO MATERIALS 2021; 4:1268-1282. [DOI: 10.1021/acsabm.0c01123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ivonne L. Diaz Ariza
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C. 11001, Colombia
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, Bayreuth 95447, Germany
| | - León D. Pérez Pérez
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C. 11001, Colombia
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
14
|
Jérôme V, Synatschke CV, Freitag R. Transient Destabilization of Biological Membranes Contributes to the Superior Performance of Star-Shaped PDMAEMA in Delivering pDNA. ACS OMEGA 2020; 5:26640-26654. [PMID: 33110991 PMCID: PMC7581230 DOI: 10.1021/acsomega.0c03367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Nonviral DNA vectors are promising alternatives to viral ones. Their use in DNA medicine is limited by an inability to transfect, for example, nondividing or suspension cells. In recent years, star-shaped synthetic polycationic vectors, so called "Nanostars", have shown some promise in this regard, at least when compared to the "gold standard" in nonviral vectors, namely, linear poly(ethyleneimine) (l-PEI). It has been hypothesized that an ability to transiently destabilize cellular membranes is partially responsible for the phenomenon. This hypothesis is investigated here, taking human leukemia suspension cells (Jurkat cells) as an example. Contrary to l-PEI, the Nanostars promote the cellular uptake of small, normally membrane-impermeant molecules (trypan blue and propidium iodide) as well as that of fluorescent polystyrene beads (average diameter 100 nm). Since Nanostars, but not l-PEI, are apparently able to deliver DNA to nuclei of nondividing cells, nuclear uptake is, in addition, investigated with isolated cell nuclei. Our results provide evidence that Nanostars are more efficient than l-PEI in increasing the nuclear membrane association/permeability, allowing accumulation of their cargo on/in the nucleus.
Collapse
Affiliation(s)
- Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
15
|
Yang K, Zhao Y, Nie X, Wu H, Wang B, Almodovar-Rivera CM, Xie H, Tang W. A Cell-Based Target Engagement Assay for the Identification of Cereblon E3 Ubiquitin Ligase Ligands and Their Application in HDAC6 Degraders. Cell Chem Biol 2020; 27:866-876.e8. [PMID: 32413286 DOI: 10.1016/j.chembiol.2020.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) is a paradigm shift for small-molecule drug discovery. However, limited E3 ubiquitin ligase ligands with cellular activity are available. In vitro binding assays involve the expression and purification of a large amount of proteins and they often yield ligands that are inactive in cell-based assays due to poor cell permeability, stability, and other reasons. Herein, we report the development of a practical and efficient cell-based target engagement assay to evaluate the binding affinity of a small library of cereblon ligands to its E3 ligase in cells. Selected cell-permeable E3 ligase ligands derived from this assay are then used to construct HDAC6 degraders with cellular protein degradation activity. Because the assay does not involve any genetic engineering, it is relatively easy to transfer from one cell type to a different one.
Collapse
Affiliation(s)
- Ka Yang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Zhao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xueqing Nie
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hao Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bo Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Haibo Xie
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
16
|
Kolonko AK, Bangel-Ruland N, Goycoolea FM, Weber WM. Chitosan Nanocomplexes for the Delivery of ENaC Antisense Oligonucleotides to Airway Epithelial Cells. Biomolecules 2020; 10:biom10040553. [PMID: 32260534 PMCID: PMC7226018 DOI: 10.3390/biom10040553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoscale drug delivery systems exhibit a broad range of applications and promising treatment possibilities for various medical conditions. Nanomedicine is of great interest, particularly for rare diseases still lacking a curative treatment such as cystic fibrosis (CF). CF is defined by a lack of Cl− secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) and an increased Na+ absorption mediated by the epithelial sodium channel (ENaC). The imbalanced ion and water transport leads to pathological changes in many organs, particularly in the lung. We developed a non-viral delivery system based on the natural aminopolysaccharide chitosan (CS) for the transport of antisense oligonucleotides (ASO) against ENaC to specifically address Na+ hyperabsorption. CS–ASO electrostatic self-assembled nanocomplexes were formed at varying positive/negative (P/N) charge ratios and characterized for their physicochemical properties. Most promising nanocomplexes (P/N 90) displayed an average size of ~150 nm and a zeta potential of ~+30 mV. Successful uptake of the nanocomplexes by the human airway epithelial cell line NCI-H441 was confirmed by fluorescence microscopy. Functional Ussing chamber measurements of transfected NCI-H441 cells showed significantly decreased Na+ currents, indicating successful downregulation of ENaC. The results obtained confirm the promising characteristics of CS as a non-viral and non-toxic delivery system and demonstrate the encouraging possibility to target ENaC with ASOs to treat abnormal ion transport in CF.
Collapse
Affiliation(s)
- A. Katharina Kolonko
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
- Correspondence: ; Tel.: +49-251-832-1784
| | - Nadine Bangel-Ruland
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
| | | | - Wolf-Michael Weber
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
| |
Collapse
|
17
|
Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. CRYSTALS 2019. [DOI: 10.3390/cryst9080411] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modification of CD4+ T cells with exogenous nucleic acids or proteins is a critical step in several research and therapeutic applications, such as HIV studies and cancer immunotherapies. However, efficient cell transfections are not always easily achieved when working with these primary hard-to-transfect cells. While the modification of T cells is typically performed by viral transduction or electroporation, their use is associated with safety issues or cytotoxicity. Vapor nanobubble (VNB) photoporation with sensitizing gold nanoparticles (AuNPs) has recently emerged as a new technology for safe and flexible cell transfections. In this work, we evaluated the potential of VNB photoporation as a novel technique for the intracellular delivery of macromolecules in primary human CD4+ T cells using fluorescent dextrans as model molecules. Our results show that VNB photoporation enables efficient delivery of fluorescent dextrans of 10 kDa in Jurkat (>60% FD10+ cells) as well as in primary human CD4+ T cells (±40% FD10+ cells), with limited cell toxicity (>70% cell viability). We also demonstrated that the technique allows the delivery of dextrans that are up to 500 kDa in Jurkat cells, suggesting its applicability for the delivery of biological macromolecules with a wide range of molecular weights. Altogether, VNB photoporation represents a promising technique for the universal delivery of macromolecules in view of engineering CD4+ T cells for use in a wide variety of research and therapeutic applications.
Collapse
|