1
|
Cabrera-Villamizar L, Campano C, López-Rubio A, Fabra MJ, Prieto MA. Tailoring the structural and physicochemical properties of rice straw cellulose-based cryogels by cell-mediated polyhydroxyalkanoate deposition. Carbohydr Polym 2024; 346:122604. [PMID: 39245490 DOI: 10.1016/j.carbpol.2024.122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
This study presents a novel biotechnological approach for creating water vapor-resistant cryogels with improved integrity. Rice straw cellulose was transformed into nanofibrils through TEMPO-mediated oxidation and high-pressure homogenization. The resulting cryogels remained firm even when immersed in aqueous media, whose pores were used by live cell to deposit polyhydroxyalkanoate (PHA) particles inside them. This novel method allowed the compatibilization of PHA within the cellulosic fibers. As a consequence, the water sorption capacity was decreased by up to 6 times having just 4 % of PHA compared to untreated cryogels, preserving the cryogel density and elasticity. Additionally, this technique can be adapted to various bacterial strains and PHA types, allowing for further optimization. It was demonstrated that the amount and type of PHA (medium chain length and small chain length-PHA) used affects the properties for the cryogels, especially the water vapor sorption behavior and the compressive strength. Compared to traditional coating methods, this cell-mediated approach not only allows to distribute PHA on the surface of the cryogel, but also ensures polymer penetration throughout the cryogel due to bacterial self-movement. This study opens doors for creating cryogels with tunable water vapor sorption and other additional functionalities through the use of specialized PHA variants.
Collapse
Affiliation(s)
- Laura Cabrera-Villamizar
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain.
| | - Cristina Campano
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain; Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB), CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain.
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain.
| | - M Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain; Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB), CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Li S, Wang Y, Dong Q, Yuan Z, Mu T, Xue Z, Cao L. Polyol-assisted ternary deep eutectic solvent protective lignocellulose pretreatment for high-efficiency xylan utilization and ethanol production. Carbohydr Polym 2024; 346:122628. [PMID: 39245529 DOI: 10.1016/j.carbpol.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
The traditional lignocellulose pretreatment by deep eutectic solvent (DES) was usually conducted under higher acidic, alkaline and high temperature conditions, which leads to the severe degradation of xylan, decreasing the subsequent reducing sugar concentration by enzymatic hydrolysis and further ethanol fermentation. It is essential to develop an effective DES that selectively removes lignin while preventing excessive xylan degradation during lignocellulose pretreatment. An effective ethylene glycol-assisted ternary DES was designed to treat corn straw (CS) at 100 °C for 6 h. 65.51 % lignin removal was achieved, over 93.46 % cellulose and 50.22 % xylan were retained in pretreated CS with excellent enzymatic digestibility (glucan conversion of 77.05 % and xylan conversion of 71.72 %), total sugar conversion could reach 75.93 %, implying the unique capacity to selectively remove lignin while preserving carbohydrate components. Furthermore, the universality of the selective removal of lignin and effective retention of xylan by ternary DES has been successfully proven by other polyols. The enzymatic hydrolysate of ternary DES-pretreated CS fermented over our genetically engineered yeast strain SFA1OE gave a high ethanol yield of 0.488 g/g total reducing sugar, demonstrating the effectiveness of the polyol-assisted ternary DES pretreatment in achieving high-efficiency cellulosic ethanol production.
Collapse
Affiliation(s)
- Shan Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yang Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qinghe Dong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zitong Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Tiancheng Mu
- School of chemistry and life resources, Renmin University of China, Beijing 100872, China
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Limin Cao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
3
|
Solihat NN, Purwanti T, Husna N, Oktaviani M, Zulfiana D, Fatriasari W, Nawawi DS. Capability lignin from Acacia crassicarpa black liquor as an environmentally benign antibacterial agent to produce antibacterial and hydrophobic textiles. BIORESOURCE TECHNOLOGY 2024; 413:131409. [PMID: 39226942 DOI: 10.1016/j.biortech.2024.131409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/15/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Recently, the growing health awareness of society on the utilization of fabrics has led to an increasing demand for natural-based antibacterial textiles. Lignin, a generous polyphenol compound in nature, is capable of preventing bacterial growth; in particular, it dwells bacteria closely together on human skin, such as Staphylococcus epidermidis, Bacillus subtilis, Propionibacterium acnes, and Staphylococcus aureus. However, the antibacterial properties of lignin are limited by factors such as the lignin concentration, source, and type of bacteria. This study aimed to evaluate the potency of lignin as an antibacterial agent for textiles. Moreover, the thermal properties and wettability of the textile after lignin coating were also investigated. This study showed that lignin isolation methods significantly contributed to the inhibition of bacterial growth in the clear zone diameter. In addition, the lignin structure, lignin concentration, and type of bacteria had notably different antibacterial effects. SEM images showed that lignin was successfully coated on the fiber, and the antibacterial textile was successfully fabricated with clear zones in the range of 0.1-0.5 cm against four different bacteria. Lignin did not significantly improve the thermal stability of the textile, as proven by the TGA results. After the HDTMS coating by dispersion method, the wettability of the lignin-textile improved to that of the hydrophobic material, with a contact angle greater than 119.05° with excellent antibacterial properties (clear zone of 0.1-0.43 cm).
Collapse
Affiliation(s)
- Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong 16911, Indonesia.
| | - Try Purwanti
- Research Center for Biomass and Bioproducts, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong 16911, Indonesia; Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia
| | - Naurotul Husna
- Research Center for Biomass and Bioproducts, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong 16911, Indonesia; Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia
| | - Maulida Oktaviani
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 1691, Indonesia
| | - Deni Zulfiana
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 1691, Indonesia
| | - Widya Fatriasari
- Research Center for Biomass and Bioproducts, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong 16911, Indonesia
| | - Deded Sarip Nawawi
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
4
|
Huang Y, Liu L, Wang R, Jiang T, Yu Q, Wang E, Yuan H. Functional identification of carbohydrate-binding module 13 and its application to quantification of hemicellulose in gramineous plants. Int J Biol Macromol 2024; 282:136752. [PMID: 39437942 DOI: 10.1016/j.ijbiomac.2024.136752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Gramineous biomass is a type of lignocellulose commonly used as a renewable energy source. Accurate quantification of hemicellulose within this biomass is crucial for its efficient conversion. Carbohydrate-binding modules (CBMs) help catalytic domains anchor substrates, representing the potential to be developed as fluorescence probes for hemicellulose content determination. In this study, we discovered a CBM named EmCBM13, derived from the bifunctional enzyme Xyn10A/Fae1A within the bacterial consortium EMSD5. This CBM displays a remarkable ability to bind soluble and insoluble hemicellulose components of gramineous plants. Through molecular docking and mutational analysis, we pinpointed two essential tyrosine residues mediating ligand interaction of EmCBM13. Leveraging the binding characteristics of EmCBM13, we created a fluorescence probe called EmCBM13-GFP by fusing a GFP with EmCBM13. We observed a positive correlation between the fluorescence contents of EmCBM13-GFP bound to hemicellulose and the hemicellulose contents in various gramineous biomasses. Utilizing this correlation, we rapidly determined the hemicellulose content in different gramineous plants with 90-110 % accuracy. This probe shows promise in quickly evaluating the characteristics of gramineous biomass feedstock for research and production purposes.
Collapse
Affiliation(s)
- Yaru Huang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruonan Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tingting Jiang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qijun Yu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Wang Y, Sun XF, Chen J, Hu S, Sun R. Efficient Extraction and Analysis of Wheat Straw Lignin by Response Surface Methodology. Polymers (Basel) 2024; 16:2935. [PMID: 39458763 PMCID: PMC11511024 DOI: 10.3390/polym16202935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
To enhance the high-value utilization of straw waste and achieve efficient lignin extraction, wheat straw was selected as the feedstock for investigating the effects of reaction temperature, reaction time, solid-liquid ratio, and formic acid concentration on lignin yield using a formic acid/acetic acid solvent system. A single-factor experimental design was initially employed, followed by optimization using the response surface methodology. Additionally, a kinetic model was developed to describe lignin extraction kinetics in the formic acid/acetic acid system. The structural characteristics and thermal stability of the extracted lignin were analyzed via FTIR, UV spectroscopy, and TGA. The findings indicate that increasing reaction temperature, reaction time, solid-liquid ratio, and formic acid content all significantly enhanced lignin extraction yield from wheat straw, with the primary influencing factors being reaction temperature > solid-liquid ratio > reaction time > formic acid content. The optimal extraction conditions were identified at a reaction temperature of 90 °C, a reaction time of 3.5 h, a solid-liquid ratio of 1:16.5, and a formic acid content of 86.2 wt.%, yielding a lignin content of 79.83%. The analytical results demonstrated that the extracted lignin preserved the structural integrity of the original lignin and exhibited good thermal stability.
Collapse
Affiliation(s)
- Yongke Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Jiayi Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
6
|
Ali Z, Talpur FN, Afridi HI, Ahmed F, Brohi NA, Abbasi H. Analytical approaches and advancement in the analysis of natural and synthetic fiber: A comprehensive review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125164. [PMID: 39332174 DOI: 10.1016/j.saa.2024.125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Accurately determining fiber composition is essential for optimizing material properties across diverse applications in textiles, composites, packaging, and other bio-based materials. Fiber performance in textiles, composites, and bio-based materials depends upon their intricate composition. This review explores advanced analytical techniques for the comprehensive characterization of natural (cellulose-hemicellulose-lignin) and synthetic (polymeric) fibers. Natural fibers primarily consist of cellulose, hemicellulose, and lignin, while synthetic fibers are formed by linking small monomer units, such as nylon, polyester, and acrylics. RESULTS A variety of analytical methods are employed for fiber composition analysis, including microscopy, spectroscopy, chromatography, thermal analysis, and wet chemical methods. A multi-modal approach employing advanced techniques is essential for in-depth fiber analysis. Spectroscopic methods like Fourier Transform Infrared Spectroscopy (FTIR) offer rapid, non-destructive determination of chemical functionalities. Near-infrared spectroscopy (NIR) offers another efficient approach, particularly when integrated with chemometric techniques like Principal Component Regression (PCR) and Partial Least Squares (PLS) for precise quantification of cellulose, hemicellulose, and lignin. Additionally, thermal analysis methods such as Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Dynamic Mechanical Analysis (DMA) provide insights into thermal stability and mechanical characteristics of fibers. SIGNIFICANCE This review emphasizes the importance of an integrated approach utilizing various analytical methods for comprehensive fiber characterization. While traditional wet chemical methods offer limited advantages, the combined use of advanced techniques provides a more holistic understanding of fiber properties. As technology evolves, this integrated approach is expected to shape the future of fiber analysis and its applications across diverse industries.
Collapse
Affiliation(s)
- Zafar Ali
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan; Chemistry Department, University of Turbat, Balochistan 92600, Pakistan
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan.
| | - Hassan Imran Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - Farooq Ahmed
- Department of Textile, Mehran University of Engineering & Technology, Jamshoro 76080, Sindh, Pakistan
| | - Nazir A Brohi
- Department of Microbiology, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Habibullah Abbasi
- Center for Environmental Sciences, University of Sindh, Jamshoro, Sindh, Pakistan
| |
Collapse
|
7
|
Alvarado Flores JJ, Pintor Ibarra LF, Mendez Zetina FD, Rutiaga Quiñones JG, Alcaraz Vera JV, Ávalos Rodríguez ML. Pyrolysis and Physicochemical, Thermokinetic and Thermodynamic Analyses of Ceiba aesculifolia (Kunth) Britt and Baker Waste to Evaluate Its Bioenergy Potential. Molecules 2024; 29:4388. [PMID: 39339383 PMCID: PMC11434498 DOI: 10.3390/molecules29184388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Ceiba aesculifolia is an important species in Mexico that generates significant amounts of biomass waste during its exploitation, which can be utilized to produce energy. This study presents the characterization of this waste based on chemical (proximal and elemental) and thermal analyses (TGA-DTG) at different heating rates (β = 10-30 °C/min (283-303 K/min)) in the presence of nitrogen and in a temperature range of 25-900 °C. Kinetic parameters were calculated and analyzed as well. Activation energy (Ea) and the pre-exponential factor (A) were determined using the Friedman (132.03 kJ/mol, 8.11E + 10 s -1), FWO (121.65 kJ/mol, 4.30E + 09), KAS (118.14 kJ/mol, 2.41E + 09), and Kissinger (155.85 kJ/mol, 3.47E + 11) kinetic methods. Variation in the reaction order, n (0.3937-0.6141), was obtained by Avrami's theory. We also calculated the thermodynamic parameters (ΔH, ΔG, ΔS) for each kinetic method applied. The results for Ea, A, n, ΔH, ΔG, and ΔS show that this biomass waste is apt for use in pyrolysis. Moreover, the moisture (<10%), ash (<2%), volatile material (>80%), and HHV (>19%) contents of C. aesculifolia allowed us to predict acceptable performance in generating energy and fuels. Finally, infrared spectroscopy analysis (FT-IR) allowed us to identify important functional groups, including one that belongs to the family of the aliphatic hydrocarbons.
Collapse
Affiliation(s)
- José Juan Alvarado Flores
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Edif. D. Cd. Universitaria, Santiago Tapia No. 403, Centro, Morelia 58000, Mexico
| | - Luis Fernando Pintor Ibarra
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Edif. D. Cd. Universitaria, Santiago Tapia No. 403, Centro, Morelia 58000, Mexico
| | - Fernando Daniel Mendez Zetina
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Edif. D. Cd. Universitaria, Santiago Tapia No. 403, Centro, Morelia 58000, Mexico
| | - José Guadalupe Rutiaga Quiñones
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Edif. D. Cd. Universitaria, Santiago Tapia No. 403, Centro, Morelia 58000, Mexico
| | - Jorge Víctor Alcaraz Vera
- Instituto de Investigaciones Económicas y Empresariales, Universidad Michoacana de San Nicolás de Hidalgo, Cd. Universitaria, Santiago Tapia No. 403, Centro, Morelia 58000, Mexico
| | - María Liliana Ávalos Rodríguez
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, Morelia 58190, Mexico
| |
Collapse
|
8
|
Świechowski K, Rosik J, Bednik M, Szatkowska B, Tomczak-Wandzel R, Stegenta-Dąbrowska S. Heracleum sosnowskyi pyrolysis - Energy and environmental aspects of biochar utilization. BIORESOURCE TECHNOLOGY 2024; 408:131169. [PMID: 39069139 DOI: 10.1016/j.biortech.2024.131169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The Heracleum sosnowskyi is a highly invasive plant species known for its rapid spread and the significant threat it poses to the ecosystem and human health, primarily due to its furanocoumarin content. In the present study, for the first time the pyrolysis process (200-600 °C) of Heracleum was conducted, demonstrating its efficacy in utilizing the material as feedstock and generating valuable solid by-products. It was found that biochar produced at temperatures of 200-300 °C is suitable for solid fuel production (HHV 20.2-24.1 MJ·kg-1) and has strong hydrophobic properties, while pyrolysis over 400 °C promotes the improvement of fertilizing properties by increasing the content of micro and macronutrients (K=112.4 g·kg-1 at 600 °C). The mass and energy analysis proved that in specific conditions (for dry > 300 °C; for wet > 400 °C), pyrolysis can be an effective way for Heracleum biomass conversion into valuable biochar without the need for external energy.
Collapse
Affiliation(s)
- Kacper Świechowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37a, Wroclaw 51-630, Poland.
| | - Joanna Rosik
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37a, Wroclaw 51-630, Poland.
| | - Magdalena Bednik
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53 St., Wrocław 50-375, Poland.
| | | | | | - Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37a, Wroclaw 51-630, Poland.
| |
Collapse
|
9
|
Fontecha-Cámara MÁ, Delgado-Blanca I, Mañas-Villar M, Orriach-Fernández FJ, Soriano-Cuadrado B. Extraction and Depolymerization of Lignin from Different Agricultural and Forestry Wastes to Obtain Building Blocks in a Circular Economy Framework. Polymers (Basel) 2024; 16:1981. [PMID: 39065298 PMCID: PMC11280865 DOI: 10.3390/polym16141981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Large amounts of agri-food waste are generated and discarded annually, but they have the potential to become highly profitable sources of value-added compounds. Many of these are lignin-rich residues. Lignin, one of the most abundant biopolymers in nature, offers numerous possibilities as a raw material or renewable resource for the production of chemical products. This study aims to explore the potential revalorization of agricultural by-products through the extraction of lignin and subsequent depolymerization. Different residues were studied; river cane, rice husks, broccoli stems, wheat straw, and olive stone are investigated (all local wastes that are typically incinerated). Traditional soda extraction, enhanced by ultrasound, is applied, comparing two different sonication methods. The extraction yields from different residues were as follows: river cane (28.21%), rice husks (24.27%), broccoli (6.48%), wheat straw (17.66%), and olive stones (24.29%). Once lignin is extracted, depolymerization is performed by three different methods: high-pressure reactor, ultrasound-assisted solvent depolymerization, and microwave solvolysis. As a result, a new microwave depolymerization method has been developed and patented, using for the first time graphene nanoplatelets (GNPs) as new promising carbonaceous catalyst, achieving a 90.89% depolymerization rate of river cane lignin and yielding several building blocks, including guaiacol, vanillin, ferulic acid, or acetovanillone.
Collapse
Affiliation(s)
| | | | | | | | - Belén Soriano-Cuadrado
- Andaltec, Plastic Technological Center, 23600 Martos, Spain; (M.Á.F.-C.); (I.D.-B.); (M.M.-V.); (F.J.O.-F.)
| |
Collapse
|
10
|
Daminova AG, Leksin IY, Khabibrakhmanova VR, Gurjanov OP, Galeeva EI, Trifonova TV, Khamatgalimov AR, Beckett RP, Minibayeva FV. The Roles of the Anthraquinone Parietin in the Tolerance to Desiccation of the Lichen Xanthoria parietina: Physiology and Anatomy of the Pale and Bright-Orange Thalli. Int J Mol Sci 2024; 25:7067. [PMID: 39000176 PMCID: PMC11240919 DOI: 10.3390/ijms25137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Lichens are symbiotic organisms that effectively survive in harsh environments, including arid regions. Maintaining viability with an almost complete loss of water and the rapid restoration of metabolism during rehydration distinguishes lichens from most eukaryotic organisms. The lichen Xanthoria parietina is known to have high stress tolerance, possessing diverse defense mechanisms, including the presence of the bright-orange pigment parietin. While several studies have demonstrated the photoprotective and antioxidant properties of this anthraquinone, the role of parietin in the tolerance of lichens to desiccation is not clear yet. Thalli, which are exposed to solar radiation and become bright orange, may require enhanced desiccation tolerance. Here, we showed differences in the anatomy of naturally pale and bright-orange thalli of X. parietina and visualized parietin crystals on the surface of the upper cortex. Parietin was extracted from bright-orange thalli by acetone rinsing and quantified using HPLC. Although acetone rinsing did not affect PSII activity, thalli without parietin had higher levels of lipid peroxidation and a lower membrane stability index in response to desiccation. Furthermore, highly pigmented thalli possess thicker cell walls and, according to thermogravimetric analysis, higher water-holding capacities than pale thalli. Thus, parietin may play a role in desiccation tolerance by stabilizing mycobiont membranes, providing an antioxidative defense, and changing the morphology of the upper cortex of X. parietina.
Collapse
Affiliation(s)
- Amina G. Daminova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Ilya Y. Leksin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Venera R. Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Oleg P. Gurjanov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Ekaterina I. Galeeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Tatyana V. Trifonova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Ayrat R. Khamatgalimov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia;
| | - Richard P. Beckett
- School of Life Sciences, University of KwaZulu-Natal, PBag X01, Scottsville 3209, South Africa;
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Farida V. Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| |
Collapse
|
11
|
Liu X, Xie J, Jacquet N, Blecker C. Valorization of Grain and Oil By-Products with Special Focus on Hemicellulose Modification. Polymers (Basel) 2024; 16:1750. [PMID: 38932097 PMCID: PMC11207775 DOI: 10.3390/polym16121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Hemicellulose is one of the most important natural polysaccharides in nature. Hemicellulose from different sources varies in chemical composition and structure, which in turn affects the modification effects and industrial applications. Grain and oil by-products (GOBPs) are important raw materials for hemicellulose. This article reviews the modification methods of hemicellulose in GOBPs. The effects of chemical and physical modification methods on the properties of GOBP hemicellulose biomaterials are evaluated. The potential applications of modified GOBP hemicellulose are discussed, including its use in film production, hydrogel formation, three-dimensional (3D) printing materials, and adsorbents for environmental remediation. The limitations and future recommendations are also proposed to provide theoretical foundations and technical support for the efficient utilization of these by-products.
Collapse
Affiliation(s)
| | | | - Nicolas Jacquet
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2B, B-5030 Gembloux, Belgium; (X.L.); (J.X.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2B, B-5030 Gembloux, Belgium; (X.L.); (J.X.)
| |
Collapse
|
12
|
Hussain A, Parveen F, Saxena A, Ashfaque M. A review of nanotechnology in enzyme cascade to address challenges in pre-treating biomass. Int J Biol Macromol 2024; 270:132466. [PMID: 38761904 DOI: 10.1016/j.ijbiomac.2024.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Nanotechnology has become a revolutionary technique for improving the preliminary treatment of lignocellulosic biomass in the production of biofuels. Traditional methods of pre-treatment have encountered difficulties in effectively degrading the intricate lignocellulosic composition, thereby impeding the conversion of biomass into fermentable sugars. Nanotechnology has enabled the development of enzyme cascade processes that present a potential solution for addressing the limitations. The focus of this review article is to delve into the utilization of nanotechnology in the pretreatment of lignocellulosic biomass through enzyme cascade processes. The review commences with an analysis of the composition and structure of lignocellulosic biomass, followed by a discussion on the drawbacks associated with conventional pre-treatment techniques. The subsequent analysis explores the importance of efficient pre-treatment methods in the context of biofuel production. We thoroughly investigate the utilization of nanotechnology in the pre-treatment of enzyme cascades across three distinct sections. Nanomaterials for enzyme immobilization, enhanced enzyme stability and activity through nanotechnology, and nanocarriers for controlled enzyme delivery. Moreover, the techniques used to analyse nanomaterials and the interactions between enzymes and nanomaterials are introduced. This review emphasizes the significance of comprehending the mechanisms underlying the synergy between nanotechnology and enzymes establishing sustainable and environmentally friendly nanotechnology applications.
Collapse
Affiliation(s)
- Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
13
|
Puglia D, Luzi F, Tolisano C, Rallini M, Priolo D, Brienza M, Costantino F, Torre L, Del Buono D. Cellulose Nanocrystals and Lignin Nanoparticles Extraction from Lemna minor L.: Acid Hydrolysis of Bleached and Ionic Liquid-Treated Biomass. Polymers (Basel) 2024; 16:1395. [PMID: 38794588 PMCID: PMC11125853 DOI: 10.3390/polym16101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Using biomass to develop and obtain environmentally friendly and industrially applicable biomaterials is increasingly attracting global interest. Herein, cellulose nanocrystals (CNCs) and lignin nanoparticles (LNPs) were extracted from Lemna minor L., a freshwater free-floating aquatic species commonly called duckweed. To obtain CNCs and LNPs, two different procedures and biomass treatment processes based on bleaching or on the use of an ionic liquid composed of triethylammonium and sulfuric acid ([TEA][HSO4]), followed by acid hydrolysis, were carried out. Then, the effects of these treatments in terms of the thermal, morphological, and chemical properties of the CNCs and LNPs were assessed. The resulting nanostructured materials were characterized by using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that the two methodologies applied resulted in both CNCs and LNPs. However, the bleaching-based treatment produced CNCs with a rod-like shape, length of 100-300 nm and width in the range of 10-30 nm, and higher purity than those obtained with ILs that were spherical in shape. In contrast, regarding lignin, IL made it possible to obtain spherical nanoparticles, as in the case of the other treatment, but they were characterized by higher purity and thermal stability. In conclusion, this research highlights the possibility of obtaining nanostructured biopolymers from an invasive aquatic species that is largely available in nature and how it is possible, by modifying experimental procedures, to obtain nanomaterials with different morphological, purity, and thermal resistance characteristics.
Collapse
Affiliation(s)
- Debora Puglia
- Department of Civil and Environmental Engineering, University of Perugia, UdR INSTM, 05100 Terni, Italy; (M.R.); (L.T.)
| | - Francesca Luzi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Polytechnic University of Marche, UdR INSTM, 60131 Ancona, Italy;
| | - Ciro Tolisano
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (C.T.); (D.P.); (D.D.B.)
| | - Marco Rallini
- Department of Civil and Environmental Engineering, University of Perugia, UdR INSTM, 05100 Terni, Italy; (M.R.); (L.T.)
| | - Dario Priolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (C.T.); (D.P.); (D.D.B.)
| | - Monica Brienza
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Ferdinando Costantino
- Dipartimento di Chimica, Biologia e Biotecnologia, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
| | - Luigi Torre
- Department of Civil and Environmental Engineering, University of Perugia, UdR INSTM, 05100 Terni, Italy; (M.R.); (L.T.)
| | - Daniele Del Buono
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (C.T.); (D.P.); (D.D.B.)
| |
Collapse
|
14
|
Alfatah T, Abdul Khalil HPS. Sustainable lignin nanoparticles from coconut fiber waste for enhancing multifunctional properties of macroalgae biofilms. Int J Biol Macromol 2024; 258:128858. [PMID: 38128796 DOI: 10.1016/j.ijbiomac.2023.128858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Multifunctional and sustainable packaging biofilms felicitous to changeable conditions are in large demand as substitutes to petroleum-derived synthetic films. Macroalgae with noticeable film-formation, abundant, low-cost, and edible properties is a promising bioresource for sustainable and eco-friendly packaging materials. However, the poor hydrophobicity and mechanical properties of sustainable macroalgae biofilms seriously impede their practical applications. Herein, lignin nanoparticles (LNPs) produced by a sustainable approach from black liquor of coconut fiber waste were incorporated in the macroalgae matrix to improve the water tolerance and mechanical characteristics of the biofilms. The effect of different LNPs loadings on the performance of biofilms, such as physical, morphological, surface roughness, structural, water resistance, mechanical, and thermal behaviors, were systematically evaluated and found to be considerably improved. Biofilm with 6 % LNPs presented the optimum enhancement in most ultimate performances. The optimized biofilm exhibited great hydrophobic features with a water contact angle of over 100° and high enhancement in the tensile strength of >60 %. This study proposes a facile and sustainable approach for designing and developing LNPs-macroalgae biofilms with excellent and multifunctional properties for sustainable high-performance packaging materials.
Collapse
Affiliation(s)
- Tata Alfatah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Environment and Forestry Office of the Provincial Government of Aceh, Banda Aceh 23239, Indonesia.
| | - H P S Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
15
|
Najafi H, Golrokh Sani A, Sobati MA. Thermogravimetric and thermo-kinetic analysis of sugarcane bagasse pith: a comparative evaluation with other sugarcane residues. Sci Rep 2024; 14:2076. [PMID: 38267497 PMCID: PMC10808550 DOI: 10.1038/s41598-024-52500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
In this study, thermogravimetric and thermo-kinetic analysis of sugarcane bagasse pith (S.B.P.) were performed using a robust suite of experiments and kinetic analyses, along with a comparative evaluation on the thermo-kinetic characteristics of two other major sugarcane residues, namely sugarcane straw (S.C.S.) and sugarcane bagasse (S.C.B.). The thermogravimetric analysis evaluated the pyrolysis behavior of these residues at different heating rates in a nitrogen atmosphere. The Kissinger, advanced non-linear isoconversional (ANIC), and Friedman methods were employed to obtain effective activation energies. Moreover, the compensation effect theory (CE) and combined kinetic analysis (CKA) were used to determine the pre-exponential factor and pyrolysis kinetic model. Friedman's method findings indicated that the average activation energies of S.C.S., S.C.B., and S.B.P. are 188, 170, and 151 kJ/mol, respectively. The results of the ANIC method under the integral step Δα = 0.01 were closely aligned with those of the Friedman method. The CKA and CE techniques estimated ln(f(α)Aα) with an average relative error below 0.7%. The pre-exponential factors of S.C.S., S.C.B., and S.B.P. were in the order of 1014, 1012, and 1011 (s-1), respectively. From a thermodynamic viewpoint, positive ∆G* and ∆H* results provide evidence for the non-spontaneous and endothermic nature of the pyrolysis process, indicating the occurrence of endergonic reactions.
Collapse
Affiliation(s)
- Hamidreza Najafi
- XThermo Research Group, No.117, Somayeh Street, Tehran, 158176-8511, Iran
| | - Ahmad Golrokh Sani
- XThermo Research Group, No.117, Somayeh Street, Tehran, 158176-8511, Iran
| | - Mohammad Amin Sobati
- School of Chemical Engineering, Iran University of Science and Technology (IUST), Postal Box 16765-163, Tehran, Iran.
| |
Collapse
|
16
|
Saxena A, Hussain A, Parveen F, Ashfaque M. Current status of metabolic engineering of microorganisms for bioethanol production by effective utilization of pentose sugars of lignocellulosic biomass. Microbiol Res 2023; 276:127478. [PMID: 37625339 DOI: 10.1016/j.micres.2023.127478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Lignocellulosic biomass, consisting of homo- and heteropolymeric sugars, acts as a substrate for the generation of valuable biochemicals and biomaterials. The readily available hexoses are easily utilized by microbes due to the presence of transporters and native metabolic pathways. But, utilization of pentose sugar viz., xylose and arabinose are still challenging due to several reasons including (i) the absence of the particular native pathways and transporters, (ii) the presence of inhibitors, and (iii) lower uptake of pentose sugars. These challenges can be overcome by manipulating metabolic pathways/glycosidic enzymes cascade by using genetic engineering tools involving inverse-metabolic engineering, ex-vivo isomerization, Adaptive Laboratory Evolution, Directed Metabolic Engineering, etc. Metabolic engineering of bacteria and fungi for the utilization of pentose sugars for bioethanol production is the focus area of research in the current decade. This review outlines current approaches to biofuel development and strategies involved in the metabolic engineering of different microbes that can uptake pentose for bioethanol production.
Collapse
Affiliation(s)
- Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
17
|
Abdeldayem OM, Al Noman MA, Dupont C, Ferras D, Grand Ndiaye L, Kennedy M. Hydrothermal carbonization of Typha australis: Influence of stirring rate. ENVIRONMENTAL RESEARCH 2023; 236:116777. [PMID: 37517487 DOI: 10.1016/j.envres.2023.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
According to existing literature, there are no conclusive results on the impact of stirring on hydrothermal carbonization (HTC); some studies report a significant impact on the product's properties, while others indicate no influence. This study investigates the influence of stirring rate on several responses and properties of HTC products, including solid mass yield, solid carbon fraction, surface area, surface functional groups, morphology, and the fate of inorganic elements during HTC. Waste biomass was introduced as a feedstock to a 2 L HTC reactor, where the effects of temperature (180-250 °C), residence time (4-12 h), biomass to water (B/W) ratio (1-10%), and stirring rate (0-130 rpm) were investigated. The findings of this study conclusively indicated that the stirring rate does not influence any of the studied responses or properties of hydrochar under the selected experimental conditions used in this study. Nevertheless, the results indicated that a low-stirring rate (5 RPM) is enough to slightly enhanced the heating-up phase of the HTC reactor. For future research, it is recommended to examine the impact of stirring rate on the HTC of other types of biomass using the methodology developed in this study.
Collapse
Affiliation(s)
- Omar M Abdeldayem
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Capucine Dupont
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - David Ferras
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Lat Grand Ndiaye
- Department of Physics, University Assane Seck of Ziguinchor, BP.523, Ziguinchor, Senegal
| | - Maria Kennedy
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| |
Collapse
|
18
|
Tsai CH, Tsai WT. Optimization of Physical Activation Process by CO 2 for Activated Carbon Preparation from Honduras Mahogany Pod Husk. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6558. [PMID: 37834694 PMCID: PMC10573756 DOI: 10.3390/ma16196558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
In this work, the Honduras Mahogany (Swietenia macropnylla King, SMK) seed husk was used as a novel biomass resource for producing activated carbon by physical activation. The texture characteristics and chemical characterization of resulting products were investigated in correlation with the process parameters. Based on the thermochemical properties of the SMK biomass, the process conditions were set to a rate of about 10 °C/min under nitrogen (N2) flow of 500 cm3/min heated to 500 °C, then switched to carbon dioxide (CO2) flow of 100 cm3/min in the specified activation conditions (i.e., temperature of 700-850 °C for holding times of 0-60 min). Our findings showed that the texture characteristics (i.e., surface area and pore volume) increased with an activation temperature increase from 700 to 800 °C for a holding time of 30 min but gradually decreased as the temperature increased thereafter. Similarly, the texture characteristics also indicated an increasing trend with the residence time extending from 0 min to 30 min but slightly decreased as the time was extended to 60 min. Therefore, the optimal activation conditions for producing SMK-based activated carbon should be set at 800 °C for a holding time of 30 min to obtain the maximal texture characteristics (i.e., BET surface area of 966 m2/g and total pore volume of 0.43 cm3/g). On the other hand, the chemical characteristics were analyzed by energy dispersive X-ray spectroscopy (EDS) and Fourier Transform infrared spectroscopy (FTIR), showing oxygen complexes contained on the hydrophilic surface of the resulting activated carbon.
Collapse
Affiliation(s)
- Chi-Hung Tsai
- Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Wen-Tien Tsai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
19
|
Lazarus BS, Leung V, Luu RK, Wong MT, Ruiz-Pérez S, Barbosa WT, Bezerra WBA, Barbosa JDV, Meyers MA. Jackfruit: Composition, structure, and progressive collapsibility in the largest fruit on the Earth for impact resistance. Acta Biomater 2023; 166:430-446. [PMID: 37121367 DOI: 10.1016/j.actbio.2023.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The jackfruit is the largest fruit on the Earth, reaching upwards of 35 kg and falling from heights of 25 m. To survive such high energy impacts, it has evolved a unique layered configuration with a thorny exterior and porous tubular underlayer. During compression, these layers exhibit a progressive collapse mechanism where the tubules are first to deform, followed by the thorny exterior, and finally the mesocarp layer in between. The thorns are composed of lignified bundles which run longitudinally from the base of the thorn to the tip and are embedded in softer parenchymal cells, forming a fiber reinforced composite. The mesocarp contains more lignin than any of the other layers while the core appears to contain more pectin giving rise to variations in compressive and viscoelastic properties between the layers. The surface thorns provide a compelling impact-resistant feature for bioinspiration, with a cellular structure that can withstand large deformation without failing and wavy surface features which densify during compression without fracturing. Even the conical shape of the thorns is valuable, presenting a gradually increasing surface area during axial collapse. A simplified model of this mechanism is put forward to describe the force response of these features. The thorns also distribute damage laterally during impact and deflect cracks along their interstitial valleys. These phenomena were observed in 3D printed, jackfruit-inspired designs which performed markedly better than control prints with the same mass. STATEMENT OF SIGNIFICANCE: Many biological materials have evolved remarkable structures that enhance their mechanical performance and serve as sources of inspiration for engineers. Plants are often overlooked in this regard yet certain botanical components, like nuts and fruit, have shown incredible potential as blueprints for improved impact resistant designs. The jackfruit is the largest fruit on Earth and generates significant falling impact energies. Here, we explore the jackfruit's structure and its mechanical capabilities for the first time. The progressive failure imparted by its multilayered design and the unique collapse mode of the surface thorns are identified as key mechanisms for improving the fruit's impact resistance. 3D printing is used to show that these structure-property benefits can be successfully transferred to engineering materials.
Collapse
Affiliation(s)
- Benjamin S Lazarus
- Materials Science and Engineering Program, University of California San Diego, USA.
| | - Victor Leung
- Department of Mechanical and Aerospace Engineering, University of California San Diego, USA
| | - Rachel K Luu
- Department of Mechanical and Aerospace Engineering, University of California San Diego, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA
| | - Matthew T Wong
- Department of Nanoengineering, University of California San Diego, USA
| | - Samuel Ruiz-Pérez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Willams T Barbosa
- Department of Materials, University Center SENAI CIMATEC, Salvador, Brazil
| | - Wendell B Almeida Bezerra
- Department of Materials Science, Military Institute of Engineering-IME, Rio de Janeiro 22290270, Brazil
| | | | - Marc A Meyers
- Materials Science and Engineering Program, University of California San Diego, USA; Department of Mechanical and Aerospace Engineering, University of California San Diego, USA; Department of Nanoengineering, University of California San Diego, USA
| |
Collapse
|
20
|
Jordà-Reolid M, Moreno V, Martínez-Garcia A, Covas JA, Gomez-Caturla J, Ivorra-Martinez J, Quiles-Carrillo L. Incorporation of Argan Shell Flour in a Biobased Polypropylene Matrix for the Development of High Environmentally Friendly Composites by Injection Molding. Polymers (Basel) 2023; 15:2743. [PMID: 37376389 DOI: 10.3390/polym15122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, a new composite material is developed using a semi bio-based polypropylene (bioPP) and micronized argan shell (MAS) byproducts. To improve the interaction between the filler and the polymer matrix, a compatibilizer, PP-g-MA, is used. The samples are prepared using a co-rotating twin extruder followed by an injection molding process. The addition of the MAS filler improves the mechanical properties of the bioPP, as evidenced by an increase in tensile strength from 18.2 MPa to 20.8 MPa. The reinforcement is also observed in the thermomechanical properties, with an increased storage modulus. The thermal characterization and X-ray diffraction indicate that the addition of the filler leads to the formation of α structure crystals in the polymer matrix. However, the addition of a lignocellulosic filler also leads to an increased affinity for water. As a result, the water uptake of the composites increases, although it remains relatively low even after 14 weeks. The water contact angle is also reduced. The color of the composites changes to a color similar to wood. Overall, this study demonstrates the potential of using MAS byproducts to improve their mechanical properties. However, the increased affinity with water should be taken into account in potential applications.
Collapse
Affiliation(s)
- María Jordà-Reolid
- Innovative Materials and Manufacturing Area-AIJU, Technological Institute for Children's Products & Leisure, 03440 Ibi, Spain
| | - Virginia Moreno
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain
| | - Asunción Martínez-Garcia
- Innovative Materials and Manufacturing Area-AIJU, Technological Institute for Children's Products & Leisure, 03440 Ibi, Spain
| | - José A Covas
- Institute for Polymers and Composites, University of Minho, 4804-533 Guimaraes, Portugal
| | - Jaume Gomez-Caturla
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain
| | - Juan Ivorra-Martinez
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain
| | - Luis Quiles-Carrillo
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain
| |
Collapse
|
21
|
Kinetics of In-Situ Catalytic Pyrolysis of Rice Husk Pellets Using a Multi-Component Kinetics Model. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2023. [DOI: 10.9767/bcrec.17226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Ash-based catalysts, as low-cost materials, are applicable in biomass pyrolysis and play a role in lowering the activation energy. This study enriched the insights of different method of catalyst addition into biomass in the catalytic pyrolysis. The addition of rice husk ash as a catalyst into rice husk pellets allows for better solid-solid contact between the biomass and the catalyst, since the common methods were only solid mixing. This research aimed to investigate the thermal characteristics and kinetics of the biomass components (hemicellulose, cellulose, lignin) in the in-situ catalytic pyrolysis of rice husk pellets with the addition of husk ash. The three-independent parallel reaction kinetics model was used to calculate the kinetics parameters based on thermogravimetric analysis conducted at 303-873 K with various heating rates (5, 10, 20 K/min) and ash addition ratios (10:0, 10:1, 10:2). The thermogram shows that the pyrolysis of rice husk pellets was divided into two stages. Stage 1, ranging from 510-650 K, represented the decomposition of hemicellulose and cellulose, occurring faster with high mass loss, while Stage 2, starting at around 650 K, represented lignin decomposition, occurring more slowly with low mass loss. The catalytic activity of the ash was only apparent at high temperatures, where cellulose and lignin decomposition were more dominant. Activation energy, as a representation of catalytic activity for each component, was not always lower in catalytic pyrolysis. However, the average activation energy decreased with increasing heating rates and ash addition ratios. The addition of the catalyst slowed the decomposition of hemicellulose but accelerated the decomposition of cellulose and lignin. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
22
|
Puițel AC, Suditu GD, Drăgoi EN, Danu M, Ailiesei GL, Balan CD, Chicet DL, Nechita MT. Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze-Thaw Cycles. Polymers (Basel) 2023; 15:polym15041038. [PMID: 36850320 PMCID: PMC9963123 DOI: 10.3390/polym15041038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The alkaline extraction of hemicelluloses from a mixture of three varieties of wheat straw (containing 40.1% cellulose, 20.23% xylan, and 26.2% hemicellulose) was analyzed considering the following complementary pre-treatments: freeze-thaw cycles, microwaves, and ultrasounds. The two cycles freeze-thaw approach was selected based on simplicity and energy savings for further analysis and optimization. Experiments planned with Design Expert were performed. The regression model determined through the response surface methodology based on the severity factor (defined as a function of time and temperature) and alkali concentration as variables was then used to optimize the process in a multi-objective case considering the possibility of further use for pulping. To show the properties and chemical structure of the separated hemicelluloses, several analytical methods were used: high-performance chromatography (HPLC), Fourier-transformed infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H-NMR), thermogravimetry and derivative thermogravimetry analysis (TG, DTG), and scanning electron microscopy (SEM). The verified experimental optimization result indicated the possibility of obtaining hemicelluloses material containing 3.40% glucan, 85.51% xylan, and 7.89% arabinan. The association of hot alkaline extraction with two freeze-thaw cycles allows the partial preservation of the hemicellulose polymeric structure.
Collapse
Affiliation(s)
- Adrian Cătălin Puițel
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Gabriel Dan Suditu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Elena Niculina Drăgoi
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Maricel Danu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
| | - Cătălin Dumitrel Balan
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Daniela-Lucia Chicet
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 41, 700050 Iaşi, Romania
| | - Mircea Teodor Nechita
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
- Correspondence:
| |
Collapse
|
23
|
Ben Abdallah A, Ben Hassen Trabelsi A, Navarro MV, Veses A, García T, Mihoubi D. Pyrolysis of tea and coffee wastes: effect of physicochemical properties on kinetic and thermodynamic characteristics. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2023; 148:2501-2515. [PMID: 36789153 PMCID: PMC9911335 DOI: 10.1007/s10973-022-11878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED Physicochemical properties, kinetic pyrolysis and thermodynamic study of spent green tea, pure spent coffee grounds, spent coffee grounds blended with 50% torrefied barley and coffee husk were experimentally investigated using thermogravimetric analysis under an inert atmosphere to evaluate their thermochemical application. Five isoconversional methods were applied to determine effective activation energy (E a) of the pyrolysis processes. All methods showed good agreement by determining fluctuating E a values (150-500 kJ mol-1). Complex E a profiles with conversion were divided into four stages corresponding to thermal degradation of main biomass constituents (extractives, hemicellulose, cellulose and lignin), indicating that extractives decomposition was the least demanding reaction while lignin decomposition was the most demanding. The kinetic process was verified by reconstruction according to the Friedman parameters. The thermodynamic parameters were evaluated to determine the energy demand and efficiency throughout the process. The values obtained for physicochemical properties such as volatile matter (> 68%) and higher heating value (> 17 MJ kg-1), average E a (223-319 kJ mol-1) and significant energy efficiency implied that these types of biomass waste have significant reactivity and consequently the highest potential for the production of bioenergy and a range of high-value chemicals and materials. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10973-022-11878-4.
Collapse
Affiliation(s)
- Asma Ben Abdallah
- Department of Energy Engineering, National School of Engineers of Monastir, University of Monastir, 5000 Monastir, Tunisia
- Laboratory of Wind Energy Management and Waste Energy Recovery (LMEEVED), Research and Technology Center of Energy (CRTEn), B.P. 95, 2050 Hammam-Lif, Tunisia
| | - Aïda Ben Hassen Trabelsi
- Laboratory of Wind Energy Management and Waste Energy Recovery (LMEEVED), Research and Technology Center of Energy (CRTEn), B.P. 95, 2050 Hammam-Lif, Tunisia
| | | | - Alberto Veses
- Instituto de Carboquímica (ICB-CSIC), C/ Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Tomás García
- Instituto de Carboquímica (ICB-CSIC), C/ Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Daoued Mihoubi
- Laboratory of Wind Energy Management and Waste Energy Recovery (LMEEVED), Research and Technology Center of Energy (CRTEn), B.P. 95, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
24
|
Experimental Study on the Manufacturing of Functional Paper with Modified by N-Methylmorpholine-N-oxide Surfaces. Polymers (Basel) 2023; 15:polym15030692. [PMID: 36771993 PMCID: PMC9921016 DOI: 10.3390/polym15030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The manufacturing of paper with new functional properties is a current problem today. A method of modifying the surface layer of paper by the partial dissolution of cellulose on its surface is proposed. N-Methylmorpholine-N-oxide (NMMO) is proposed for use as a solvent, the regeneration of which provides an environmentally friendly process. It was shown that among the possible hydrate forms of the solvent, the monohydrate and higher-melting forms are optimal for modifying the paper surface. The temperature-time modes of processing were revealed and the weight gain and density increase in the course of modification were estimated. The structural and morphological features of the original and modified paper were studied by X-ray imaging and scanning microscopy. The NMMO surface treatment makes it possible to vary the air permeability of the paper, making it practically non-permeable. The capillary and pore system were radically transformed after the partial dissolution of cellulose and its coagulation, as the formed cellulose film isolates them, which leads to a decrease in surface absorbency. The processing conditions allowing for the optimization of the optical and strength properties of the modified paper samples are revealed. The resulting paper with a modified N-methylmorpholine-N-oxide surface layer can be used for printing valuable documents.
Collapse
|
25
|
A New Insight into the Composition and Physical Characteristics of Corncob—Substantiating Its Potential for Tailored Biorefinery Objectives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Corncobs of four different corn varieties were physically segregated into two different anatomical portions, namely the corncob outer (CO) and corncob pith (CP). The biomass composition analysis of both the CO and CP was performed by four different methods. The CP showed a higher carbohydrate and lower lignin content (83.32% and 13.58%, respectively) compared with the CO (79.93% and 17.12%, respectively) in all of the methods. The syringyl/guaiacyl (S/G) ratio was observed to be higher in the CP (1.34) than in the CO (1.28). The comprehensive physical characterization of both samples substantiated the lower crystallinity and lower thermal stability that was observed in the CP compared to the CO. These properties make the CP more susceptible to glycanases, as evident from the enzymatic saccharification of CP carried out with a commercial cellulase and xylanase in this work. The yields obtained were 70.57% and 88.70% of the respective theoretical yields and were found to be equal to that of pure cellulose and xylan substrates. These results support the feasibility of the tailored valorization of corncob anatomical portions, such as enzymatic production of xylooligosaccharides from CP without pretreatment combined with the bioethanol production from pretreated CO to achieve an economical biorefinery output from corncob feedstock.
Collapse
|
26
|
Niang B, Schiavone N, Askanian H, Verney V, Ndiaye D, Diop AB. Development and Characterization of PBSA-Based Green Composites in 3D-Printing by Fused Deposition Modelling. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217570. [PMID: 36363169 PMCID: PMC9657635 DOI: 10.3390/ma15217570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 06/01/2023]
Abstract
Fused deposition modelling is a rapidly growing additive manufacturing technology due to its ability to build functional parts with complex geometries. The mechanical properties of a built part depend on several process parameters. The effect of wood content on the properties of 3D printed parts has been studied. Four types of filaments using poly(butylene succinate-co-adipate) (PBSA) with different reinforcement levels of Typha stem powder 0%, 5%, 10%, and 15% by weight were used for 3D printing. The density of the filaments and parts printed in this study increased with the Typha stem powder content. The thermal stability, mechanical performance, and viscoelastic properties of the different biocomposite filaments and 3D printed objects were analysed. The results show an increase in the crystallisation kinetics and a slight decrease in the thermal stability of the biomaterials. Compared to virgin PBSA FDM filaments, the PBSA biocomposite filament filled with Typha stem powder showed an increase in the tensile strength of the parts and specimens from 2.5 MPa to 8 MPa and in the modulus of elasticity from 160 MPa to 375 MPa, respectively, with additions of 5%, 10%, and 15% by mass. The addition of Typha stem fibres generated an increase in the elastic behaviour and relaxation time of the biomaterial structure, visualised by increases in the values of the viscosity components. The surface morphology reveals a decrease in the porosity of the printed samples.
Collapse
Affiliation(s)
- Babacar Niang
- Laboratory of Atmospheric and Ocean-Material Sciences, Energy, Device, Training and Research Unit of Applied Sciences and Technologies, Gaston Berger University, Saint-Louis 234, Senegal
| | - Nicola Schiavone
- National Centre for Scientific Research, Clermont Ferrand Institute of Chemistry, Clermont Auvergne University, SIGMA Clermont, 63000 Clermont-Ferrand, France
| | - Haroutioun Askanian
- National Centre for Scientific Research, Clermont Ferrand Institute of Chemistry, Clermont Auvergne University, SIGMA Clermont, 63000 Clermont-Ferrand, France
| | - Vincent Verney
- National Centre for Scientific Research, Clermont Ferrand Institute of Chemistry, Clermont Auvergne University, SIGMA Clermont, 63000 Clermont-Ferrand, France
| | - Diène Ndiaye
- Laboratory of Atmospheric and Ocean-Material Sciences, Energy, Device, Training and Research Unit of Applied Sciences and Technologies, Gaston Berger University, Saint-Louis 234, Senegal
| | - Abdoulaye Bouya Diop
- Laboratory of Atmospheric and Ocean-Material Sciences, Energy, Device, Training and Research Unit of Applied Sciences and Technologies, Gaston Berger University, Saint-Louis 234, Senegal
| |
Collapse
|
27
|
Al Amin Leamon AKM, Venegas MP, Orsat V, Auclair K, Dumont MJ. Semisynthetic transformation of banana peel to enhance the conversion of sugars to 5-hydroxymethylfurfural. BIORESOURCE TECHNOLOGY 2022; 362:127782. [PMID: 35970500 DOI: 10.1016/j.biortech.2022.127782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to efficiently convert banana peels (BP) into 5-hydroxymethylfurfural (HMF) by using an integrated mechanoenzymatic/catalytic approach. There is no report on HMF production using mechanoenzymatic hydrolysis. Moreover, this method enables saccharification of lignocellulose without bulk solvents or pretreatment. The effects of the reaction volume, milling time, and reactive aging (RAging) on the mechanoenzymatic hydrolysis of BP were studied. The solvent-free enzymatic hydrolysis of BP under RAging conditions was found to provide higher glucose (40.5 wt%) and fructose (17.2 wt%) yields than chemical hydrolysis. Next, the conversion of the resulting monosaccharides into HMF in the presence of the AlCl3·H2O/HCl-DMSO/H2O system resulted in 71.9 mol% yield, which is so far the highest HMF yield obtained from cellulosic food wastes. Under identical reaction conditions, direct conversion of untreated BP to HMF yielded 22.7 mol% HMF, suggesting that mechanoenzymatic hydrolysis greatly promotes the release of sugars from BP to improve HMF yield.
Collapse
Affiliation(s)
- A K M Al Amin Leamon
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mario Perez Venegas
- Chemistry Department, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Karine Auclair
- Chemistry Department, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; Chemical Engineering Department, Université Laval, 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
28
|
McCaffrey Z, Cal A, Torres L, Chiou BS, Wood D, Williams T, Orts W. Polyhydroxybutyrate Rice Hull and Torrefied Rice Hull Biocomposites. Polymers (Basel) 2022; 14:polym14183882. [PMID: 36146029 PMCID: PMC9501343 DOI: 10.3390/polym14183882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Raw and torrefied rice hulls (RRH and TRH) were incorporated into polyhydroxybutyrate (PHB) as fillers using extrusion and injection molding to produce biomass-polymer composites. Filler and composite materials were characterized by particle size analysis, thermomechanical analysis, thermogravimetric analysis, differential scanning calorimetry, FTIR analysis, CHNSO analysis, and mechanical testing. Heat distortion temperature of the RRH composites were 16–22 °C higher than TRH composites. The RRH composite samples showed a 50–60% increase in flexural modulus and 5% increase in stress at yield compared to PHB, while TRH composite samples showed nearly equal flexural modulus and a 24% decrease in stress at yield. The improved mechanical properties of the RRH composites in comparison to TRH composites were due to better particle-matrix adhesion. FTIR analysis showed RRH particles contained more surface functional groups containing oxygen than TRH particles, indicating that RRHs should be more compatible with the polar PHB plastic. SEM images showed space between filler and plastic in TRH composites and better wetted filler particles in the RRH composites.
Collapse
Affiliation(s)
- Zach McCaffrey
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
- Correspondence:
| | - Andrew Cal
- Mango Materials, 490 Lake Park Ave, Oakland, CA 94610, USA
| | - Lennard Torres
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Bor-Sen Chiou
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Delilah Wood
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Tina Williams
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - William Orts
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|
29
|
Continuous Bioethanol Production by Fungi and Yeast Working in Tandem. ENERGIES 2022. [DOI: 10.3390/en15124338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biofuel is considered one of the most viable alternatives to fossil fuels derived from the dwindling petroleum resources that damage the environment. Bioethanol could be manufactured from agricultural wastes, thus providing inexpensive natural resources. Several strategies have been utilized to convert lignocellulosic hydrolysate to bioethanol with various suspended microorganisms. In this study, we alternatively propose to encapsulate these microorganisms in bioreactor setups. An immobilized cell system can provide resistance to the inhibitors present in hydrolysates, enhance productivity, facilitate the separation process, and improve microorganism recycling. Herein, we developed a continuous bioethanol production process by encapsulating three types of micro-organisms: T. reesei, S. cerevisiae, and P. stipitis. These microorganisms were encapsulated in SBP (“Small Bioreactor Platform”) capsules and tested for their viability post encapsulation, biological activity, and bioethanol production. Encapsulating microorganisms in SBP capsules provided a confined protective environment for the microorganisms, facilitated their acclimation, and ensured their long-term prosperity and activity. An additional significant benefit of utilizing SBP capsules was the simultaneous availability of saccharification and fermentation over a very long time—about 2.5–3 months—with no need to renew the cells or encapsulating matrices. Two different configurations were tested. The first one consisted of columns packed with fungal cells and specific yeast cells together. In the second configuration, the fungal cells were separated from the yeast cells into two columns in series. The presented systems achieved an efficiency of 60–70%, suggesting the long-term prosperity and uninterrupted metabolic activity of the microorganisms.
Collapse
|
30
|
Puițel AC, Suditu GD, Danu M, Ailiesei GL, Nechita MT. An Experimental Study on the Hot Alkali Extraction of Xylan-Based Hemicelluloses from Wheat Straw and Corn Stalks and Optimization Methods. Polymers (Basel) 2022; 14:polym14091662. [PMID: 35566831 PMCID: PMC9102963 DOI: 10.3390/polym14091662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we describe an experimental study on the hot alkali extraction of hemicelluloses from wheat straw and corn stalks, two of the most common lignocellulosic biomass constituents in Romania. The chemical compositions of the raw materials were determined analytically, and the relevant chemical components were cellulose, hemicelluloses, lignin, and ash. Using the response surface methodology, the optimum values of the hot alkaline extraction parameters, i.e., time, temperature, and NaOH concentration, were identified and experimentally validated. The physicochemical characterization of the isolated hemicelluloses was performed using HPLC, FTIR, TG, DTG, and 1H-NMR spectroscopy. The main hemicellulose components identified experimentally were xylan, arabinan, and glucan. The study emphasizes that both corn stalks and wheat straw are suitable as raw materials for hemicellulose extraction, highlighting the advantages of alkaline pretreatments and showing that optimization methods can further improve the process efficiency.
Collapse
Affiliation(s)
- Adrian Cătălin Puițel
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, No. 73, 700050 Iaşi, Romania; (A.C.P.); (G.D.S.); (M.D.)
| | - Gabriel Dan Suditu
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, No. 73, 700050 Iaşi, Romania; (A.C.P.); (G.D.S.); (M.D.)
| | - Maricel Danu
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, No. 73, 700050 Iaşi, Romania; (A.C.P.); (G.D.S.); (M.D.)
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania;
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania;
| | - Mircea Teodor Nechita
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, No. 73, 700050 Iaşi, Romania; (A.C.P.); (G.D.S.); (M.D.)
- Correspondence:
| |
Collapse
|
31
|
Insight into the extraction and characterization of cellulose nanocrystals from date pits. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
32
|
A Sustainable Approach on Spruce Bark Waste Valorization through Hydrothermal Conversion. Processes (Basel) 2022. [DOI: 10.3390/pr10010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the context of sustainable use of resources, hydrothermal conversion of biomass has received increased consideration. As well, the hydrochar (the solid C-rich phase that occurs after the process) has caused great interest. In this work, spruce bark (Picea abies) wastes were considered as feedstock and the influence of hydrothermal process parameters (temperature, reaction time, and biomass to water ratio) on the conversion degree has been studied. Using the response surface methodology and MiniTab software, the process parameters were set up and showed that temperature was the significant factor influencing the conversion, while residence time and the solid-to-liquid ratio had a low influence. Furthermore, the chemical (proximate and ultimate analysis), structural (Fourier-transform infrared spectroscopy, scanning electron microscopy) and thermal properties (thermogravimetric analysis) of feedstock and hydrochar were analyzed. Hydrochar obtained at 280 °C, 1 h processing time, and 1/5 solid-to-liquid ratio presented a hydrophobic character, numerous functional groups, a lower O and H content, and an improved C matter, as well as a good thermal stability. Alongside the structural features, these characteristics endorsed this waste-based product for applications other than those already known as a heat source.
Collapse
|
33
|
Wahib SA, Da'na DA, Zaouri N, Hijji YM, Al-Ghouti MA. Adsorption and recovery of lithium ions from groundwater using date pits impregnated with cellulose nanocrystals and ionic liquid. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126657. [PMID: 34315023 DOI: 10.1016/j.jhazmat.2021.126657] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The study aims to prepare a novel low-cost and environmentally friendly adsorbent by using date pits (DP) impregnated with cellulose nanocrystals (CNCs) and ionic liquid (IL), named IL-CNC@DP. The batch adsorption of lithium onto IL-CNC@DP and DP were studied at different pH values, initial lithium concentrations, and temperatures. The thermodynamics constants of the adsorption process showed that the IL-CNC@DP was exothermic, did not favor a high level of disorder, and spontaneous in nature. At pH 6, there is a significant increase in the removal efficiency where it increased to 90%. This also could be explained by the fact that electrostatic attraction forces and hydrogen bonding existed between the protonated Li+ and the less protonated IL-CNC@DP adsorbent surface, which enhanced the percentage of Li+ removal. A strong inter- and intra-hydrogen bonding (O-H) stretching absorption is seen at 3311 cm-1 that occurs in cellulose components. In conclusion, the IL-CNC@DP in comparison to the DP confirmed exceptional results proving that the modification enhanced the remediation of the Li+ from water. Furthermore, the selectivity of IL-CNC@DP towards real groundwater samples isolated in Qatar depends upon the physicochemical characteristics of each element.
Collapse
Affiliation(s)
- Sara A Wahib
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Dana A Da'na
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Nabil Zaouri
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Yousef M Hijji
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
34
|
Hydrothermal liquefaction of Fucus vesiculosus algae catalyzed by Hβ zeolite catalyst for Biocrude oil production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Yuan Q, Liu S, Ma MG, Ji XX, Choi SE, Si C. The Kinetics Studies on Hydrolysis of Hemicellulose. Front Chem 2021; 9:781291. [PMID: 34869229 PMCID: PMC8637159 DOI: 10.3389/fchem.2021.781291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The kinetics studies is of great importance for the understanding of the mechanism of hemicellulose pyrolysis and expanding the applications of hemicellulose. In the past years, rapid progress has been paid on the kinetics studies of hemicellulose hydrolysis. In this article, we first introduced the hydrolysis of hemicelluloses via various strategies such as autohydrolysis, dilute acid hydrolysis, catalytic hydrolysis, and enzymatic hydrolysis. Then, the history of kinetic models during hemicellulose hydrolysis was summarized. Special attention was paid to the oligosaccharides as intermediates or substrates, acid as catalyst, and thermogravimetric as analyzer method during the hemicellulose hydrolysis. Furthermore, the problems and suggestions of kinetic models during hemicellulose hydrolysis was provided. It expected that this article will favor the understanding of the mechanism of hemicellulose pyrolysis.
Collapse
Affiliation(s)
- Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Shan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Xing-Xiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Gangwon National University, Chuncheon, South Korea
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
36
|
Vegetable Oil-Based Resins Reinforced with Spruce Bark Powder and with Its Hydrochar Lignocellulosic Biomass. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A bio-based polymeric matrix was developed by the copolymerization of a vegetable oil-based epoxy, epoxidized linseed oil (ELO), with dodecenyl succinic anhydride (DDSA). To obtain eco-friendly bio-composites, this matrix was combined with a natural filler: spruce bark powder (SB) with its hydrochar (HC) in various proportions ranged from 1 to 30 wt.%. The reactivities of these formulations were studied by DSC analysis that highlighted that both fillers have a high catalytic effect on the ELO–DDSA crosslinking reaction. The complementary studies by TGA, DMA, tensile tests, water absorption and Shore tests had shown that both HC and SB bring improvements to the mechanical properties of the composites, fulfilling multiple roles: (i) Both act as co-reactants in the copolymerization mechanism; (ii) HC acts as reinforcement, consolidating the network and providing stiffness and rigidity; and (iii) SB acts as plasticizer for reducing the brittle character of the epoxy resins.
Collapse
|
37
|
Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate. Catalysts 2021. [DOI: 10.3390/catal11091082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrolysis and butanolysis of lignocellulosic biomass are efficient routes to produce two valuable bio-based platform chemicals, levulinic acid and n-butyl levulinate, which find increasing applications in the field of biofuels and for the synthesis of intermediates for chemical and pharmaceutical industries, food additives, surfactants, solvents and polymers. In this research, the acid-catalyzed hydrolysis of the waste residue of Cynara cardunculus L. (cardoon), remaining after seed removal for oil exploitation, was investigated. The cardoon residue was employed as-received and after a steam-explosion treatment which causes an enrichment in cellulose. The effects of the main reaction parameters, such as catalyst type and loading, reaction time, temperature and heating methodology, on the hydrolysis process were assessed. Levulinic acid molar yields up to about 50 mol % with levulinic acid concentrations of 62.1 g/L were reached. Moreover, the one-pot butanolysis of the steam-exploded cardoon with the bio-alcohol n-butanol was investigated, demonstrating the direct production of n-butyl levulinate with good yield, up to 42.5 mol %. These results demonstrate that such residual biomass represent a promising feedstock for the sustainable production of levulinic acid and n-butyl levulinate, opening the way to the complete exploitation of this crop.
Collapse
|
38
|
Investigation of Seeds and Peels of Citrullus colocynthis as Efficient Natural Adsorbent for Methylene Blue Dye. Processes (Basel) 2021. [DOI: 10.3390/pr9081279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural adsorbents as low-cost materials have been proved efficient for water remediation and have significant capacity for the removal of certain chemicals from wastewater. The present investigation aimed to use Citrullus colocynthis seeds (CCSs) and peels (CCPs) as an efficient natural adsorbent for methylene blue (MB) dye in an aqueous solution. The examined biosorbents were characterized using surface area analyzer (BET), scanning electron microscope (SEM), thermogravimetric analyzer (TGA) and Fourier transform infra-red (FT-IR) spectroscopy. Batch adsorption experiments were conducted to optimize the main factors influencing the biosorption process. The equilibrium data for the adsorption of MB by CCSs were best described by the Langmuir isotherm followed by the Freundlich adsorption isotherms, while the equilibrium data for MB adsorption by CCPs were well fitted by the Langmuir isotherm followed by the Temkin isotherm. Under optimum conditions, the maximum biosorption capacity and removal efficiency were 18.832 mg g−1 and 98.00% for MB-CCSs and 4.480 mg g−1 and 91.43% for MB-CCPs. Kinetic studies revealed that MB adsorption onto CCSs obeys pseudo-first order kinetic model (K1 = 0.0274 min−1), while MB adsorption onto CCPs follows the pseudo-second order kinetic model (K2 = 0.0177 g mg−1 min−1). Thermodynamic studies revealed that the MB biosorption by CCSs was endothermic and a spontaneous process in nature associated with a rise in randomness, but the MB adsorption by CCPs was exothermic and a spontaneous process only at room temperature with a decline in disorder. Based on the obtained results, CCSs and CCPSs can be utilized as efficient, natural biosorbents, and CCSs is promising since it showed the highest removal percentage and adsorption capacity of MB dye.
Collapse
|
39
|
Special Issue “Production of Biofuels and Numerical Modelling of Chemical Combustion Systems”. Processes (Basel) 2021. [DOI: 10.3390/pr9050829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Biofuels have recently attracted a lot of attention, mainly as alternative fuels for applications in energy generation and transportation [...]
Collapse
|