1
|
Ciemięga A, Maresz K, Mrowiec-Białoń J. Bifunctionalised acid-base hierarchically structured monolithic microreactor for continuous-flow tandem catalytic process of cyanocinnamate synthesis. Sci Rep 2024; 14:25332. [PMID: 39455878 PMCID: PMC11511982 DOI: 10.1038/s41598-024-77146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The results on zirconia-amine bifunctional modification of hierarchically porous silica monoliths for continuous-flow processes ar presented. The study reports the synthesis and properties of the modified porous monoliths and their performance in the tandem process of deacetalization-Knoevenagel condensation reaction. The properties of the materials were studied by thermal analysis, FTIR spectroscopy, XRF and nitrogen adsorption. It was found that both active centres were uniformly distributed along the monolithic cores, and the antagonistic interaction of the acid and base centres was not observed. It was shown that hydrophobicity of the monolith surface has opposite effects on the efficiency of the studied reactions. The overall rate of the tandem process depends on the rate of the condensation reaction. The performance of the bifunctional microreactors was checked and compared with those of cascade-connected monofunctional microreactors and batch reactor. The yield of cyanocinnamate product obtained in both flow systems was ca. 78%; however, pressure drop in the bimodified reactor was only half of that in the cascade. An effective way of water supply to the reaction system has been proposed. The research demonstrates the benefits of using flow-through structured micro-/mesoreactors in tandem reaction processes.
Collapse
Affiliation(s)
- Agnieszka Ciemięga
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland.
| | - Katarzyna Maresz
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland
| | - Julita Mrowiec-Białoń
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland
| |
Collapse
|
2
|
Sheldon RA. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chemistry 2024; 30:e202402207. [PMID: 39240026 DOI: 10.1002/chem.202402207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/07/2024]
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.
Collapse
Affiliation(s)
- Roger A Sheldon
- Department of Biotechnology, Delft University of Technology, Netherlands
- Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Special Issue on “Biocatalysis, Enzyme and Process Engineering”. Processes (Basel) 2023. [DOI: 10.3390/pr11030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Biocatalysis entails the use of enzymes, which are catalytically active proteins, to speed up reactions so that products can be obtained swiftly and accurately [...]
Collapse
|
4
|
Schwaiger KN, Nidetzky B. Continuous process technology for bottom-up synthesis of soluble cello-oligosaccharides by immobilized cells co-expressing three saccharide phosphorylases. Microb Cell Fact 2022; 21:265. [PMID: 36536394 PMCID: PMC9764710 DOI: 10.1186/s12934-022-01984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Continuous processing with enzyme reuse is a well-known engineering strategy to enhance the efficiency of biocatalytic transformations for chemical synthesis. In one-pot multistep reactions, continuous processing offers the additional benefit of ensuring constant product quality via control of the product composition. Bottom-up production of cello-oligosaccharides (COS) involves multistep iterative β-1,4-glycosylation of glucose from sucrose catalyzed by sucrose phosphorylase from Bifidobacterium adeloscentis (BaScP), cellobiose phosphorylase from Cellulomonas uda (CuCbP) and cellodextrin phosphorylase from Clostridium cellulosi (CcCdP). Degree of polymerization (DP) control in the COS product is essential for soluble production and is implemented through balance of the oligosaccharide priming and elongation rates. A whole-cell E. coli catalyst co-expressing the phosphorylases in high yield and in the desired activity ratio, with CdP as the rate-limiting enzyme, was reported previously. RESULTS Freeze-thaw permeabilized E. coli cells were immobilized in polyacrylamide (PAM) at 37-111 mg dry cells/g material. PAM particles (0.25-2.00 mm size) were characterized for COS production (~ 70 g/L) in mixed vessel with catalyst recycle and packed-bed reactor set-ups. The catalyst exhibited a dry mass-based overall activity (270 U/g; 37 mg cells/g material) lowered by ~ 40% compared to the corresponding free cells due to individual enzyme activity loss, CbP in particular, caused by the immobilization. Temperature studies revealed an operational optimum at 30 °C for stable continuous reaction (~ 1 month) in the packed bed (volume: 40 mL; height: 7.5 cm). The optimum reflects the limits of PAM catalyst structural and biological stability in combination with the requirement to control COS product solubility in order to prevent clogging of the packed bed. Using an axial flow rate of 0.75 cm- 1, the COS were produced at ~ 5.7 g/day and ≥ 95% substrate conversion (sucrose 300 mM). The product stream showed a stable composition of individual oligosaccharides up to cellohexaose, with cellobiose (48 mol%) and cellotriose (31 mol%) as the major components. CONCLUSIONS Continuous process technology for bottom-up biocatalytic production of soluble COS is demonstrated based on PAM immobilized E. coli cells that co-express BaScP, CuCbP and CcCdP in suitable absolute and relative activities.
Collapse
Affiliation(s)
- Katharina N. Schwaiger
- grid.432147.70000 0004 0591 4434acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Bernd Nidetzky
- grid.432147.70000 0004 0591 4434acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria ,grid.410413.30000 0001 2294 748XInstitute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| |
Collapse
|
5
|
Concept of an Enzymatic Reactive Extraction Centrifuge. Processes (Basel) 2022. [DOI: 10.3390/pr10102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biocatalytic processes often provide an ecological alternative to many chemical processes. However, further improvements in terms of the economic efficiency are required. In order to achieve that, the concept of process integration is a promising option. Applying this within a biocatalytic process, a highly integrated apparatus working as a reactive extraction centrifuge was developed and operated. For this purpose, a commercially available extraction centrifuge was modified to implement a biocatalytic reaction. The novel apparatus was used within a multi-enzyme cascade for the production of a natural flavor and fragrance, namely cinnamic ester. The characterization of the reactive extraction centrifuge and the suitable operation conditions for the inlet streams and the rotational speed for a stable operation were determined. Furthermore, different initial substrate concentrations were applied to prove the reaction. The results provide a successful proof of concept for the novel reactive extraction centrifuge.
Collapse
|
6
|
Rodrigues CJC, de Carvalho CCCR. Marine Bioprospecting, Biocatalysis and Process Development. Microorganisms 2022; 10:1965. [PMID: 36296241 PMCID: PMC9610463 DOI: 10.3390/microorganisms10101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Oceans possess tremendous diversity in microbial life. The enzymatic machinery that marine bacteria present is the result of extensive evolution to assist cell survival under the harsh and continuously changing conditions found in the marine environment. Several bacterial cells and enzymes are already used at an industrial scale, but novel biocatalysts are still needed for sustainable industrial applications, with benefits for both public health and the environment. Metagenomic techniques have enabled the discovery of novel biocatalysts, biosynthetic pathways, and microbial identification without their cultivation. However, a key stage for application of novel biocatalysts is the need for rapid evaluation of the feasibility of the bioprocess. Cultivation of not-yet-cultured bacteria is challenging and requires new methodologies to enable growth of the bacteria present in collected environmental samples, but, once a bacterium is isolated, its enzyme activities are easily measured. High-throughput screening techniques have also been used successfully, and innovative in vitro screening platforms to rapidly identify relevant enzymatic activities continue to improve. Small-scale approaches and process integration could improve the study and development of new bioprocesses to produce commercially interesting products. In this work, the latest studies related to (i) the growth of marine bacteria under laboratorial conditions, (ii) screening techniques for bioprospecting, and (iii) bioprocess development using microreactors and miniaturized systems are reviewed and discussed.
Collapse
Affiliation(s)
- Carlos J. C. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
7
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
8
|
Ghéczy N, Xu W, Szymańska K, Jarzębski AB, Walde P. Controllable Enzyme Immobilization via Simple and Quantitative Adsorption of Dendronized Polymer-Enzyme Conjugates Inside a Silica Monolith for Enzymatic Flow-Through Reactor Applications. ACS OMEGA 2022; 7:26610-26631. [PMID: 35936452 PMCID: PMC9352229 DOI: 10.1021/acsomega.2c02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Although many different methods are known for the immobilization of enzymes on solid supports for use in flow-through applications as enzyme reactors, the reproducible immobilization of predetermined amounts of catalytically active enzyme molecules remains challenging. This challenge was tackled using a macro- and mesoporous silica monolith as a support and dendronized polymer-enzyme conjugates. The conjugates were first prepared in an aqueous solution by covalently linking enzyme molecules and either horseradish peroxidase (HRP) or bovine carbonic anhydrase (BCA) along the chains of a water-soluble second-generation dendronized polymer using an established procedure. The obtained conjugates are stable biohybrid structures in which the linking unit between the dendronized polymer and each enzyme molecule is a bisaryl hydrazone (BAH) bond. Quantitative and reproducible enzyme immobilization inside the monolith is possible by simply adding a defined volume of a conjugate solution of a defined enzyme concentration to a dry monolith piece of the desired size. In that way, (i) the entire volume of the conjugate solution is taken up by the monolith piece due to capillary forces and (ii) all conjugates of the added conjugate solution remain stably adsorbed (immobilized) noncovalently without detectable leakage from the monolith piece. The observed flow-through activity of the resulting enzyme reactors was directly proportional to the amount of conjugate used for the reactor preparation. With conjugate solutions consisting of defined amounts of both types of conjugates, the controlled coimmobilization of the two enzymes, namely, BCA and HRP, was shown to be possible in a simple way. Different stability tests of the enzyme reactors were carried out. Finally, the enzyme reactors were applied to the catalysis of a two-enzyme cascade reaction in two types of enzymatic flow-through reactor systems with either coimmobilized or sequentially immobilized BCA and HRP. Depending on the composition of the substrate solution that was pumped through the two types of enzyme reactor systems, the coimmobilized enzymes performed significantly better than the sequentially immobilized ones. This difference, however, is not due to a molecular proximity effect with regard to the enzymes but rather originates from the kinetic features of the cascade reaction used. Overall, the method developed for the controllable and reproducible immobilization of enzymes in the macro- and mesoporous silica monolith offers many possibilities for systematic investigations of immobilized enzymes in enzymatic flow-through reactors, potentially for any type of enzyme.
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory
for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Weina Xu
- Laboratory
for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Katarzyna Szymańska
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Księdza Marcina Strzody 7, Gliwice 44-100, Poland
| | - Andrzej B. Jarzębski
- Institute
of Chemical Engineering, Polish Academy
of Sciences, Baltycka 5, Gliwice 44-100, Poland
| | - Peter Walde
- Laboratory
for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| |
Collapse
|
9
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. Int J Biol Macromol 2022; 215:434-449. [PMID: 35752332 DOI: 10.1016/j.ijbiomac.2022.06.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023]
Abstract
In this review we have focused on the preparation of cross-linked enzyme aggregates (CLEAs) from lipases, as these are among the most used enzyme in bioprocesses. This immobilization method is considered very attractive due to preparation simplicity, non-use of supports and the possibility of using crude enzyme extracts. CLEAs provide lipase stabilization under extreme temperature or pH conditions or in the presence of organic solvents, in addition to preventing enzyme leaching in aqueous medium. However, it presents some problems in the preparation and limitations in their use. The problems in preparation refer mainly to the crosslinking step, and may be solved using an aminated feeder. The problems in handling have been tackled designing magnetic-CLEAs or trapping the CLEAs in particles with better mechanical properties, the substrate diffusion problems has been reduced by producing more porous-CLEAs, etc. The enzyme co-immobilization using combi-CLEAs is also a new tendency. Therefore, this review explores the CLEAs methodology aimed at lipase immobilization and its applications.
Collapse
Affiliation(s)
- Camila S Sampaio
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Joelise A F Angelotti
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Daniela B Hirata
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
11
|
Meyer LE, Fogtmann Hauge B, Müller Kvorning T, De Santis P, Kara S. Continuous oxyfunctionalizations catalyzed by unspecific peroxygenase. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00650b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Unspecific peroxygenase (UPO) has been shown to be a promising biocatalyst for oxyfunctionalization of a broad range of substrates with hydrogen peroxide (H2O2) as the cosubstrate.
Collapse
Affiliation(s)
- Lars-Erik Meyer
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Bjørn Fogtmann Hauge
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Thomas Müller Kvorning
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Piera De Santis
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167 Hannover, Germany
| |
Collapse
|
12
|
Microwave Radiation Influence on Dairy Waste Anaerobic Digestion in a Multi-Section Hybrid Anaerobic Reactor (M-SHAR). Processes (Basel) 2021. [DOI: 10.3390/pr9101772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whey is a primary by-product of dairy plants, and one that is often difficult to manage. As whey processing units are costly and complicated, only 15–20% of whey is recycled for use in the food industry. The difficulties in managing waste whey are particularly pronounced for small, local dairy plants. One possible solution to this problem is to use advanced and efficient digesters. The aim of this study was to present an innovative multi-section hybrid anaerobic bioreactor (M-SHAR) design and to identify how microwave radiation heating (MRH) affects methane fermentation of liquid dairy waste (LDW) primarily composed of acid whey. The MRH reactor was found to perform better in terms of COD removal and biogas production compared with the convection-heated reactor. The heating method had a significant differentiating effect at higher organic load rates (OLRs). With OLRs ranging from 15 to 25 kgCOD∙m−3∙d−1, the M-SHAR with MRH ensured a 5% higher COD removal efficiency and 12–20% higher biogas yields.
Collapse
|
13
|
Liu H, Nidetzky B. Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural C-glycoside nothofagin. Biotechnol Bioeng 2021; 118:4402-4413. [PMID: 34355386 PMCID: PMC9291316 DOI: 10.1002/bit.27908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023]
Abstract
C‐glycosyltransferase (CGT) and sucrose synthase (SuSy), each fused to the cationic binding module Zbasic2, were co‐immobilized on anionic carrier (ReliSorb SP400) and assessed for continuous production of the natural C‐glycoside nothofagin. The overall reaction was 3ʹ‐C‐β‐glycosylation of the polyphenol phloretin from uridine 5ʹ‐diphosphate (UDP)‐glucose that was released in situ from sucrose and UDP. Using solid catalyst optimized for total (∼28 mg/g) as well as relative protein loading (CGT/SuSy = ∼1) and assembled into a packed bed (1 ml), we demonstrate flow synthesis of nothofagin (up to 52 mg/ml; 120 mM) from phloretin (≥95% conversion) solubilized by inclusion complexation in hydroxypropyl β‐cyclodextrin. About 1.8 g nothofagin (90 ml; 12–26 mg/ml) were produced continuously over 90 reactor cycles (2.3 h/cycle) with a space‐time yield of approximately 11 mg/(ml h) and a total enzyme turnover number of up to 2.9 × 103 mg/mg (=3.8 × 105 mol/mol). The co‐immobilized enzymes exhibited useful effectiveness (∼40% of the enzymes in solution), with limitations on the conversion rate arising partly from external liquid–solid mass transfer of UDP under packed‐bed flow conditions. The operational half‐life of the catalyst (∼200 h; 30°C) was governed by the binding stability of the glycosyltransferases (≤35% loss of activity) on the solid carrier. Collectively, the current study shows integrated process technology for flow synthesis with co‐immobilized sugar nucleotide‐dependent glycosyltransferases, using efficient glycosylation from sucrose via the internally recycled UDP‐glucose. This provides a basis from engineering science to promote glycosyltransferase applications for natural product glycosides and oligosaccharides.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| |
Collapse
|
14
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|